Given:
"m=2.00\\:\\rm kg"
"k=315\\:\\rm N\/m"
"v_x(0)=-12.0\\:\\rm m\/s"
The equation of motion
"x(t)=-A\\sin(\\omega t)""\\omega=\\sqrt{k\/m}=\\sqrt{315\/2.00}=12.5\\:\\rm rad\/s"
Hence
"x(t)=-A\\sin(12.5 t)"The velocity
"v_x(t)=x'(t)=-12.5A\\cos(12.5t)"(a) the amplitude of the motion
"A=\\frac{v_x(0)}{-12.5}=\\frac{12.0}{12.5}=0.956\\:\\rm m"(b) the block's maximum acceleration
"a_{x\\max}=12.5^2A=12.5^2*0.956=149\\:\\rm m\/s^2"(c) the maximum force the spring exerts on the block
"F_{\\max}=ma_{x\\max}=149*2.00=298\\:\\rm N"
Comments
Leave a comment