1.
(a)
N cos 15 ° = m g N\cos15°=mg N cos 15° = m g
N sin 15 ° = m v 2 / R N\sin15°=mv^2/R N sin 15° = m v 2 / R
So, we have
N = m g / cos 15 ° N=mg/\cos15° N = m g / cos 15°
m g sin 15 ° / cos 15 ° = m v 2 / R → v = g R tan 15 ° = 9.8 ⋅ 500 ⋅ tan 15 ° = 36.2 ( m / s ) mg\sin15°/\cos15°=mv^2/R\to v=\sqrt{gR\tan15°}=\sqrt{9.8\cdot500\cdot\tan15°}=36.2\ (m/s) m g sin 15°/ cos 15° = m v 2 / R → v = g R tan 15° = 9.8 ⋅ 500 ⋅ tan 15° = 36.2 ( m / s )
(b)
N cos 15 ° − μ N sin 15 ° = m g → N = m g cos 15 ° − μ sin 15 ° N\cos15°-\mu N\sin15°=mg\to N=\frac{mg}{\cos15°-\mu \sin15°} N cos 15° − μ N sin 15° = m g → N = c o s 15° − μ s i n 15° m g
N sin 15 ° + μ N cos 15 ° = m v 2 / R N\sin15°+\mu N\cos15°=mv^2/R N sin 15° + μ N cos 15° = m v 2 / R
m g cos 15 ° − μ sin 15 ° ( sin 15 ° + μ cos 15 ° ) = m v 2 / R \frac{mg}{\cos15°-\mu \sin15°}(\sin15°+\mu \cos15°)=mv^2/R c o s 15° − μ s i n 15° m g ( sin 15° + μ cos 15° ) = m v 2 / R
v = g R cos 15 ° − μ sin 15 ° ( sin 15 ° + μ cos 15 ° ) = v=\sqrt{\frac{gR}{\cos15°-\mu \sin15°}(\sin15°+\mu \cos15°)}= v = c o s 15° − μ s i n 15° g R ( sin 15° + μ cos 15° ) =
= 9.8 ⋅ 500 cos 15 ° − 0.3 ⋅ sin 15 ° ( sin 15 ° + 0.3 ⋅ cos 15 ° ) = 55 ( m / s ) =\sqrt{\frac{9.8\cdot500}{\cos15°-0.3\cdot \sin15°}(\sin15°+0.3\cdot \cos15°)}=55\ (m/s) = c o s 15° − 0.3 ⋅ s i n 15° 9.8 ⋅ 500 ( sin 15° + 0.3 ⋅ cos 15° ) = 55 ( m / s )
2.
a n = ω 2 r = ( 2 π T ) 2 r = ( 2 ⋅ 3.14 5 ) 2 ⋅ 0.25 = 0.39 ( m / s 2 ) a_n=\omega^2r=(\frac{2\pi}{T})^2r=(\frac{2\cdot3.14}{5})^2\cdot0.25=0.39\ (m/s^2) a n = ω 2 r = ( T 2 π ) 2 r = ( 5 2 ⋅ 3.14 ) 2 ⋅ 0.25 = 0.39 ( m / s 2 )
Comments