Question #197174

A motor turning at 1800rev/min rotates uniformly to a stop in 20s.

(a) Find its angular deceleration in rev/s2 and rad/s2.

(b) The motor has a wheel of radius 10cm attached to its shaft. What length does the wheel

wind in the 20s?


1
Expert's answer
2021-05-23T18:55:04-0400

(a) The angular deceleration can be found from the kinematic equation:


ω=ω0+αt,\omega=\omega_0+\alpha t,α=ωω0t,\alpha=\dfrac{\omega-\omega_0}{t},α=01800 revmin1 min60 s20 s=1.5 revs2,\alpha=\dfrac{0-1800\ \dfrac{rev}{min}\cdot\dfrac{1\ min}{60\ s}}{20\ s}=-1.5\ \dfrac{rev}{s^2},α=01800 revmin1 min60 s2π rad1 rev20 s=9.42 rads2.\alpha=\dfrac{0-1800\ \dfrac{rev}{min}\cdot\dfrac{1\ min}{60\ s}\cdot\dfrac{2\pi\ rad}{1\ rev}}{20\ s}=-9.42\ \dfrac{rad}{s^2}.

The sign minus means that the motor decelerates.

(b) Let's find the initial linear velocity of the wheel:


v=ωr=1800 revmin1 min60 s2π rad1 rev0.1 m=18.85 ms.v=\omega r=1800\ \dfrac{rev}{min}\cdot\dfrac{1\ min}{60\ s}\cdot\dfrac{2\pi\ rad}{1\ rev}\cdot0.1\ m=18.85\ \dfrac{m}{s}.


Let's also find the deceleration of the wheel in m/s2:


a=vv0t=018.85 ms20 s=0.94 ms2.a=\dfrac{v-v_0}{t}=\dfrac{0-18.85\ \dfrac{m}{s}}{20\ s}=-0.94\ \dfrac{m}{s^2}.

Then, we can find the length that the wheel winds in 20 seconds from the kinematic equation:


L=d=v0t+12at2,L=d=v_0t+\dfrac{1}{2}at^2,L=18.85 ms20 s+12(0.94 ms2)(20 s)2=189 m.L=18.85\ \dfrac{m}{s}\cdot20\ s+\dfrac{1}{2}\cdot(-0.94\ \dfrac{m}{s^2})\cdot(20\ s)^2=189\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Chishimba Benjamin
05.05.23, 14:06

You really helping us as a student, continue with the same spirit God will award

LATEST TUTORIALS
APPROVED BY CLIENTS