Question #197176

A bicycle wheel of diameter 80 cm accelerates uniformly from rest to an angular speed of

50 rad/s in 20s.

(a) Find the angular acceleration of the wheel.

2

(b) If a small stone is stack between the grooves of wheel, find the tangential and radial

acceleration of a stone.

(c) During this time, how many revolutions has the wheel turned?

(d) If the wheel turns through 20 revolutions in coming to rest, at what rate was the angular

velocity changing?


1
Expert's answer
2021-05-25T10:09:55-0400

(a)

α=ωω0t,\alpha =\dfrac{\omega-\omega_0}{t},α=50 rads20 s=2.5 rads2.\alpha =\dfrac{50\ \dfrac{rad}{s}}{20\ s}=2.5\ \dfrac{rad}{s^2}.

(b) We can find the tangential acceleration of the stone as follows:


at=rα=0.8 m2.5 rads2=2 ms2.a_t=r\alpha=0.8\ m\cdot2.5\ \dfrac{rad}{s^2}=2\ \dfrac{m}{s^2}.

We can find the radial acceleration of the stone as follows:


ar=v2r=(ωr)2r=ω2r,a_r=\dfrac{v^2}{r}=\dfrac{(\omega r)^2}{r}=\omega^2r,ar=(50 rads)20.8 m=2000 rads2.a_r=(50\ \dfrac{rad}{s})^2\cdot0.8\ m=2000\ \dfrac{rad}{s^2}.

(c) We can find the number of revolutions of the wheel during the time t=20 st=20\ s from the kinematic equation:


θ=ω0t+12αt2,\theta=\omega_0t+\dfrac{1}{2}\alpha t^2,θ=0+122.5 rads2(20 s)2=500 rad.\theta=0+\dfrac{1}{2}\cdot2.5\ \dfrac{rad}{s^2}\cdot(20\ s)^2=500\ rad.n=500 rad1 rev2π rad=80 rev.n=500\ rad\cdot\dfrac{1\ rev}{2\pi\ rad}=80\ rev.

d) Let's first find the length traveled by the wheel during 20 revolutions:


L=2πnr=2π200.8 m=100 m.L=2\pi nr=2\pi\cdot20\cdot0.8\ m=100\ m.

Then, we can find the angle covered during deceleration:


θ=Lr=100 m0.8 m=125 rad.\theta=\dfrac{L}{r}=\dfrac{100\ m}{0.8\ m}= 125\ rad.

Finally, we can find the deceleration of the wheel (or the rate of change of angular velocity) from the kinematic equation:


ω2=ω02+2αθ,\omega^2=\omega_0^2+2\alpha\theta,α=ω2ω022θ,\alpha=\dfrac{\omega^2-\omega_0^2}{2\theta},α=0(50 revs2π rad1 rev)22125 rad=395 rads2.\alpha=\dfrac{0-(50\ \dfrac{rev}{s}\cdot\dfrac{2\pi\ rad}{1\ rev})^2}{2\cdot125\ rad}=-395\ \dfrac{rad}{s^2}.

The sign minus means that the wheel decelerates.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS