Question #163293

 A particle execute simple harmonic motion about the point x = 0. At t= 0, it has displaced y = 0.37 cm, and zero velocity. If the frequency of motion is 0.25/s. Calculate the period, amplitude, the maximum speed and the maximum acceleration.  


1
Expert's answer
2021-02-15T00:56:11-0500

(a)

T=1f=10.25 Hz=4.0 s.T=\dfrac{1}{f}=\dfrac{1}{0.25\ Hz}=4.0\ s.

b)

A=0.37 cm=3.7103 m.A=0.37\ cm=3.7\cdot10^{-3}\ m.

c) Let's first find angular frequency:


ω=2πf=2π0.25 Hz=1.57 rads.\omega=2\pi f=2\pi\cdot0.25\ Hz=1.57\ \dfrac{rad}{s}.

Then, we can write the displacement of the particle:


x(t)=0.0037cos(1.57t).x(t)=0.0037\cdot cos(1.57t).

Let's take the derivative of the displacement with respect to tt:


v(t)=ddt(x(t))=0.00371.57sin(1.57t)=0.0058sin(1.57t).v(t)=\dfrac{d}{dt}(x(t))=-0.0037\cdot1.57sin(1.57t)=-0.0058sin(1.57t).

The maximum speed will be when sin(1.57t)=1.sin(1.57t)=1. Then, we get:


vmax=0.0058 ms.v_{max}=-0.0058\ \dfrac{m}{s}.

d) Let's take the derivative of the speed with respect to tt:


a(t)=ddt(v(t))=0.00581.57cos(1.57t)=0.0091cos(1.57t).a(t)=\dfrac{d}{dt}(v(t))=-0.0058\cdot1.57cos(1.57t)=-0.0091cos(1.57t).

The maximum acceleration will be when cos(1.57t)=1.cos(1.57t)=1. Then, we get:


amax=0.0091 ms2.a_{max}=-0.0091\ \dfrac{m}{s^2}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS