Question #162590

A simple pendulum is found to vibrate 50 times within 200s. When 1.5m of its legth is reduced to a certain length, it vibrates 50 times in 175s. Find the original legth of the pendulum


1
Expert's answer
2021-02-10T11:01:47-0500

Let's first find the period of vibrations of first and second pendulum:


T1=t1N=200 s50=4 s,T_1=\dfrac{t_1}{N}=\dfrac{200\ s}{50}=4\ s,T2=t2N=175 s50=3.5 s.T_2=\dfrac{t_2}{N}=\dfrac{175\ s}{50}=3.5\ s.

From the definition of the period of pendulum, we have:


T1=2πLg,T_1=2\pi\sqrt{\dfrac{L}{g}},T2=2πLlg.T_2=2\pi\sqrt{\dfrac{L-l}{g}}.

Let's divide the first expression by the second one:


T1T2=Lgg(Ll),\dfrac{T_1}{T_2}=\sqrt{\dfrac{Lg}{g(L-l)}},43.5=L(Ll),\dfrac{4}{3.5}=\sqrt{\dfrac{L}{(L-l)}},L=1.31(Ll),L=1.31(L-l),L=1.31l0.31=1.311.5 m0.31=6.34 m.L=\dfrac{1.31l}{0.31}=\dfrac{1.31\cdot1.5\ m}{0.31}=6.34\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS