The wave function of a quantum particle of mass m is π (π₯) = π΄ cos(ππ₯) + π΅ sin(ππ₯) where π΄, π΅ πππ π are constants. (a) Assuming the particle is free (π = 0), show that π (π₯) is a solution of the ππβπΓΆππππππ equation. (b) Find the corresponding energy E of the particle.
The wave function of a quantum particle satisfies the Schrodinger equation
"-\\frac{\\hbar^2}{2m}\\frac{d^2\\psi(x)}{dx^2}+U(x)\\psi(x)=E\\psi(x)"In the case of free particle
"-\\frac{\\hbar^2}{2m}\\frac{d^2\\psi(x)}{dx^2}=E\\psi(x)""\\frac{d^2\\psi(x)}{dx^2}=\\frac{d^2}{dx^2}\\left(A\\cos(kx)+B\\sin(kx)\\right)\\\\\n=-k^2\\left(A\\cos(kx)+B\\sin(kx)\\right)=-k^2\\psi(x)"Hence, the "\\psi(x)" is a solution of the Schrodinger equation if
Comments
Leave a comment