(a) The amplitude is A=9.4 m.
We can find the frequency from the formula:
ω=2πf,f=2πω=2π15 srad=2.38 Hz.
(b) Let’s take the derivative of x(t) with respect to time:
v(t)=dtd(9.4sin(15t))=9.4 m⋅15 srad⋅cos(15t),v(t)=141 sm⋅cos(15t).We can obtain the maximum velocity of the motion when cos(ωt)=1, therefore:
v(t)max=141 sm.
(c) Let’s take the derivative of v(t) with respect to time:
a(t)=dtd(141 sm⋅cos(15t))=−141 sm⋅15 sradsin(15t),a(t)=−2115 s2m⋅sin(15t).We can obtain the maximum acceleration of the motion when sin(ωt)=1, therefore:
a(t)max=−2115 s2m.Answer:
(a) A=9.4 m,f=2.38 Hz.
(b) v(t)max=141 sm.
(c) a(t)max=−2115 s2m.
Comments