Question #155491

The displacement of a harmonic oscillator is given by x(t)=9.4 sin (15t), where the unit of x are

meters and t is measures in seconds.

(a) Find the amplitude and the frequency. (b) What is the maximum velocity of the motion?

(c) What is the maximum acceleration?


1
Expert's answer
2021-01-14T10:38:20-0500

(a) The amplitude is A=9.4 mA = 9.4\ m.

We can find the frequency from the formula:


ω=2πf,\omega=2\pi f,f=ω2π=15 rads2π=2.38 Hz.f=\dfrac{\omega}{2\pi}=\dfrac{15\ \dfrac{rad}{s}}{2\pi}=2.38\ Hz.

(b) Let’s take the derivative of x(t)x(t) with respect to time:


v(t)=ddt(9.4sin(15t))=9.4 m15 radscos(15t),v(t)=\dfrac{d}{dt}(9.4sin(15t))=9.4\ m\cdot15\ \dfrac{rad}{s}\cdot cos(15t),v(t)=141 mscos(15t).v(t)=141\ \dfrac{m}{s}\cdot cos(15t).

We can obtain the maximum velocity of the motion when cos(ωt)=1cos(\omega t)=1, therefore:


v(t)max=141 ms.v(t)_{max}=141\ \dfrac{m}{s}.


(c) Let’s take the derivative of v(t)v(t) with respect to time:


a(t)=ddt(141 mscos(15t))=141 ms15 radssin(15t),a(t)=\dfrac{d}{dt}(141\ \dfrac{m}{s}\cdot cos(15t))=-141\ \dfrac{m}{s}\cdot15\ \dfrac{rad}{s}sin(15t),a(t)=2115 ms2sin(15t).a(t)=-2115\ \dfrac{m}{s^2}\cdot sin(15t).

We can obtain the maximum acceleration of the motion when sin(ωt)=1sin(\omega t)=1, therefore:


a(t)max=2115 ms2.a(t)_{max}=-2115\ \dfrac{m}{s^2}.

Answer:

(a) A=9.4 m,f=2.38 Hz.A = 9.4\ m, f=2.38\ Hz.

(b) v(t)max=141 ms.v(t)_{max}=141\ \dfrac{m}{s}.

(c) a(t)max=2115 ms2.a(t)_{max}=-2115\ \dfrac{m}{s^2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS