Question #138969

A football is kicked at a velocity of 15 m/s at an angle of 25 o to the horizontal. Calculate:

a) The total flight time

b) The maximum height

c) The range of the ball.


1
Expert's answer
2020-10-19T13:20:55-0400

a) Let's write the equation of motion of the ball in horizontal and vertical directions:


x=v0tcosθ,(1)x=v_0tcos\theta, (1)y=v0tsinθ12gt2,(2)y=v_0tsin\theta-\dfrac{1}{2}gt^2, (2)

here, xx is the horizontal displacement of the ball (or the range of the ball), v0=15 msv_0 = 15 \ \dfrac{m}{s} is the initial velocity of the ball, tt is the total flight time of the ball, θ=25\theta=25^{\circ} is the launch angle, yy is the vertical displacement of the ball (or the height) and g=9.8 ms2g = 9.8 \ \dfrac{m}{s^2} is the acceleration due to gravity.

We can find the total flight time of the ball from the second equation (since ball returns to the ground, y=0y = 0):


0=v0tsinθ12gt2,0=v_0tsin\theta-\dfrac{1}{2}gt^2,t=2v0sinθg=215 mssin259.8 ms2=1.29 s.t = \dfrac{2v_0sin\theta}{g}=\dfrac{2\cdot 15\ \dfrac{m}{s}\cdot sin25^{\circ}}{9.8 \ \dfrac{m}{s^2}}=1.29 \ s.

b) Let's first find the time that ball takes to reach the maximum height from the kinematic equation:


vy=v0sinθgtrise,v_y = v_0sin\theta - gt_{rise},0=v0sinθgtrise,0=v_0sin\theta - gt_{rise},trise=v0sinθg.t_{rise} = \dfrac{v_0sin\theta}{g}.

Then, we can substitute triset_{rise}into the second equation and find the maximum height:


ymax=v0sinθv0sinθg12g(v0sinθg)2,y_{max}=v_0sin\theta\cdot\dfrac{v_0sin\theta}{g}-\dfrac{1}{2}g(\dfrac{v_0sin\theta}{g})^2,ymax=v02sin2θ2g=(15 ms)2sin22529.8 ms2=2.05 m.y_{max}=\dfrac{v_0^2sin^2\theta}{2g} = \dfrac{(15\ \dfrac{m}{s})^2 \cdot sin^2 25^{\circ}}{2\cdot 9.8 \ \dfrac{m}{s^2}} = 2.05 \ m.

c) Finally we can substitute the total flight time into the first equation and find the range of the ball:


x=v0cosθ2v0sinθg=v02sin2θg,x=v_0cos\theta \dfrac{2v_0sin\theta}{g} = \dfrac{v_0^2sin2\theta}{g},x=(15 ms)2sin2259.8 ms2=17.59 m.x=\dfrac{(15\ \dfrac{m}{s})^2 \cdot sin2\cdot 25^{\circ}}{9.8 \ \dfrac{m}{s^2}}=17.59\ m.

Answer:

a) t=1.29 s.t =1.29 \ s.

b) ymax=2.05 m.y_{max}= 2.05 \ m.

c) x=17.59 m.x=17.59\ m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS