Question #129722

Calculate the quantity of oxygen in a bucket of fresh water (volume10litre) at two different altitudes .sea level and 5000 m.a.s.l use Henry's law and assume a temperature of 15°c



1
Expert's answer
2020-08-17T08:58:00-0400

Henry's law:


x=pHx = \dfrac{p}{H}

where xx is the mole fraction of the oxigen in the water, pp is the partial oxygen preassure in air (in atm) and H=3.64×104H = 3.64\times 10^{4} is Henry's constant for oxygen at 15°c.

1. The partial oxygen preassure in air at sea level is:


p0=1 atm×0.21=0.21 atmp_0 = 1\space atm\times 0.21 = 0.21\space atm

where 0.210.21 represents the fraction of oxygen in air.

Thus:


x0=0.213.64×1045.8×106x_0 = \dfrac{0.21}{3.64\times 10^{4}} \approx 5.8\times 10^{-6}

One liter of water contains 55.56 moles of water. Thus, 10 liters will contain 555.6 moles. Thus, the quantity of oxygen will be:


n0=x0×555.6 moles=5.8×106×555.6 moles3.22×103 molesn_0 = x_0\times 555.6 \space moles = 5.8\times 10^{-6}\times 555.6\space moles \approx 3.22\times 10^{-3}\space moles

2. The partial oxygen preassure in air at 5000 m.a.s is:


p0=0.53 atm×0.21=0.11 atmp_0 = 0.53\space atm\times 0.21 = 0.11\space atm

where 0.210.21 represents the fraction of oxygen in air.

Thus:


x0=0.113.64×1043.02×106x_0 = \dfrac{0.11}{3.64\times 10^{4}} \approx 3.02\times 10^{-6}

One liter of water contains 55.56 moles of water. Thus, 10 liters will contain 555.6 moles. Thus, the quantity of oxygen will be:


n0=x0×555.6 moles=3.02×106×555.6 moles1.68×103 molesn_0 = x_0\times 555.6 \space moles = 3.02\times 10^{-6}\times 555.6\space moles \approx 1.68\times 10^{-3}\space moles

Answer. Sea level: 3.22*10^-3 moles, 5000 m.a.s: 1.68*10^-3 moles.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS