Let's apply the Newton's Second Law of Motion in projections on axis "x"- and "y":
"\\sum F_x = ma_x,""\\sum F_y = ma_y = 0,""F_{appl} - mgsin \\theta - F_{fr} = ma, (1)""N - mgcos \\theta = 0, (2)""F_{appl} - mgsin \\theta - \\mu N = ma,""N = mgcos \\theta,""F_{appl} - mgsin \\theta - \\mu mgcos \\theta = ma."From this equation we can find the coefficient of friction between the body and the plane:
"\\mu = \\dfrac{F_{appl} - mgsin \\theta - ma}{mgcos \\theta},""\\mu = \\dfrac{20 \\ N - 2 \\ kg \\cdot 9.8 \\ \\dfrac{m}{s^2} \\cdot sin23^{\\circ} - 2 \\ kg \\cdot 1.5 \\ \\dfrac{m}{s^2}}{2 \\ kg \\cdot 9.8 \\ \\dfrac{m}{s^2} \\cdot cos23^{\\circ}} = 0.52."Answer:
"\\mu = 0.52."
Comments
Leave a comment