a) The wave equation for the following diagram is
"y(x)=\\frac{h}{2}\\text{ sin}\\bigg(\\frac{2\\pi}{\\lambda }x\\bigg)=\\frac{4}{2}\\text{ sin}\\bigg(\\frac{2\\pi}{10\/2}x\\bigg)=\\\\\n\\space\\\\=2\\text{ sin}\\bigg(\\frac{2\\pi}{5}x\\bigg)."
b) Find the angular frequency "\\omega" of the wave:
"\\omega=2\\pi f=\\frac{2\\pi}{T}=\\frac{2\\pi v}{\\lambda}."
The total energy of a single wavelength is
"E_\\lambda=\\frac{1}{2}\\mu A^2\\omega^2\\lambda=\\frac{2\\mu}{\\lambda}(\\pi vA)^2." The energy of four wavelengths:
"E=4E_\\lambda=\n\\frac{8\\cdot10^6}{5}\\bigg(\\pi\\cdot\\frac{36\\cdot10^3}{3600}\\cdot2\\bigg)^2=6.3\\cdot10^9\\text{ J}."
Comments
Leave a comment