Answer to Question #269124 in Optics for Sammyowei

Question #269124

When an object is placed 6cm from the objective lense of a compound microscope the final image is two-third from the object and it is at the LDDV, calculate the focal length of the two lenses assuming that the magnification power of the instrument is 14. calculate also the separation of the two lenses


1
Expert's answer
2021-11-25T10:41:29-0500

"{v_e\\,is\\,the\\,least\\,distance\\,of\\,distinct\\,vision\\,which\\,is\\,always\\,24 cm.}\\\\\n{L\\,is\\,24-6\\,which\\,is\\,equal\\,to\\,18cm}\\\\\n{u_o = 6cm}\\\\{v_e = 24cm}\\\\{L= 18cm}\\\\{M=14}\\\\\n{f_o=focal\\,length\\,of\\,objective\\,lense}\\\\{f_e=focal\\,length\\,of\\,eyepiece\\,lense}\\\\\n{L_D=v_o+\\frac{Df_e}{D+f_e}}\\\\\n{M_D=\\frac{v_o}{6}{(1+\\frac{25}{f_e})}}\\\\\n{v_o=\\frac{84fe}{f_e+25}}\\\\\n{v_o=\\frac{84*7}{32}=18.34}\\\\\n{v_o=18.34}\\\\\n{\\frac{1}{f_o}=\\frac{1}{v_o}-\\frac{1}{u_o}}\\\\\n{\\frac{1}{f_o}=\\frac{8}{147}-\\frac{1}{6}}\\\\\n{f_o=8.91cm}\\\\\n{18=\\frac{84f_e}{f_e+24}+\\frac{24f_e}{f_e+24}}\\\\\n{18=\\frac{108f_e}{f_e+24}}\\\\\n{18f_e+432=108f_e}\\\\\n{90f_e=432}\n{f_e=\\frac{432}{90}}\\\\\n{f_e=4.8cm}\\\\\n{Distance\\,between\\,lenses={u_e+v_o}}\\\\\n{\\frac{1}{f_e}=\\frac{1}{v_e}-\\frac{1}{u_e}}\\\\\n{\\frac{-1}{u_e}=\\frac{90}{432}-\\frac{1}{24}}\\\\\n{u_e=6cm}\\\\\n{Distance\\,between\\,lenses=6+18.34=24.34cm}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS