A Young’s-double-slit experiment is performed with two wavelengths - 400 and 800
nm. Assume that both sources are perfectly coherent with each other and have
equal intensity. Calculate the light-intensity pattern on a screen placed 1 m from
the slits, which are separated by a distance of 1 cm.
Consider two plane waves with different frequencies:
"\\vec E_1=\\vec E_{10}\\exp i{(\\omega_1t+\\vec k_1\\vec r_1+\\phi_1)}"
"\\vec E_2=\\vec E_{20}\\exp i{(\\omega_2t+\\vec k_2\\vec r_2+\\phi_2)}"
"\\vec E=\\vec E_1+\\vec E_2"
"I=<\\vec E>_{\\tau}"
...
So, we will get
"I=I_1+I_2+2\\vec E_{10}\\vec E_{20}\\cos[\\Delta\\omega(t_0+\\tau\/2)+\\Delta\\vec k \\vec r+\\Delta\\phi]\\cdot\\sin c\\Delta\\omega\\tau\/2" ,
where
"\\Delta\\omega=\\omega_1-\\omega_2"
"\\Delta\\vec k\\vec r=\\vec k_1\\vec r_1-\\vec k_2\\vec r_2"
"\\Delta\\phi=\\phi_1-\\phi_2"
Comments
Leave a comment