Consider two plane waves with different frequencies:
E ⃗ 1 = E ⃗ 10 exp i ( ω 1 t + k ⃗ 1 r ⃗ 1 + ϕ 1 ) \vec E_1=\vec E_{10}\exp i{(\omega_1t+\vec k_1\vec r_1+\phi_1)} E 1 = E 10 exp i ( ω 1 t + k 1 r 1 + ϕ 1 )
E ⃗ 2 = E ⃗ 20 exp i ( ω 2 t + k ⃗ 2 r ⃗ 2 + ϕ 2 ) \vec E_2=\vec E_{20}\exp i{(\omega_2t+\vec k_2\vec r_2+\phi_2)} E 2 = E 20 exp i ( ω 2 t + k 2 r 2 + ϕ 2 )
E ⃗ = E ⃗ 1 + E ⃗ 2 \vec E=\vec E_1+\vec E_2 E = E 1 + E 2
I = < E ⃗ > τ I=<\vec E>_{\tau} I =< E > τ
...
So, we will get
I = I 1 + I 2 + 2 E ⃗ 10 E ⃗ 20 cos [ Δ ω ( t 0 + τ / 2 ) + Δ k ⃗ r ⃗ + Δ ϕ ] ⋅ sin c Δ ω τ / 2 I=I_1+I_2+2\vec E_{10}\vec E_{20}\cos[\Delta\omega(t_0+\tau/2)+\Delta\vec k \vec r+\Delta\phi]\cdot\sin c\Delta\omega\tau/2 I = I 1 + I 2 + 2 E 10 E 20 cos [ Δ ω ( t 0 + τ /2 ) + Δ k r + Δ ϕ ] ⋅ sin c Δ ω τ /2 ,
where
Δ ω = ω 1 − ω 2 \Delta\omega=\omega_1-\omega_2 Δ ω = ω 1 − ω 2
Δ k ⃗ r ⃗ = k ⃗ 1 r ⃗ 1 − k ⃗ 2 r ⃗ 2 \Delta\vec k\vec r=\vec k_1\vec r_1-\vec k_2\vec r_2 Δ k r = k 1 r 1 − k 2 r 2
Δ ϕ = ϕ 1 − ϕ 2 \Delta\phi=\phi_1-\phi_2 Δ ϕ = ϕ 1 − ϕ 2
Comments