Answer to Question #214424 in Optics for Soham Samanta

Question #214424

A multimode step index fiber has a material dispersion parameter of 250 ps 

nm−1km−l at 1.2 μm. Estimate the pulse broadening for a 10 kilometer long fiber 

with an LED source of spectral width 50 nm.


1
Expert's answer
2021-07-07T08:39:16-0400

s

elative refractive index ∆ = 2 % = 0.02

Core refractive index n1 = 1.48

Link length L = 5 km = 5000 m

Maximum optical bandwidth BW=3MHz=3×106  HzBW = 3 MHz = 3\times 10^6 \;Hz

Material dispersion parameter M = 80 ps nm-1 km-1

Spectral width due to waveguide dispersion σλ=1σ_λ = 1

The expression of the rms pulse broadening due to chromatic dispersion τ:

τL(NA)22n1cτ ≈ \frac{L(NA)^2}{2n_{1}c}

NA is the numerical aperture, n1 is core refractive index

is the velocity of light 3×108  m/s3\times 10^8\; m/s

The expression for numerical aperture NA:

NA=n12NA= n_1\sqrt{2∆}

∆ is the relative refractive index

τL(n12)22n1cτ ≈ \frac{L(n_1\sqrt{2∆})^2}{2n_1c}

τ5000(1.482×0.02)22×1.48×3×108τ ≈ \frac{5000(1.48\sqrt{2\times0.02})^2}{2\times1.48\times 3\times10^8}

τ0.493  μsτ ≈ 0.493 \;μs

The expression to calculate the rms pulse broadening per km

τL=0.493  μs5  km=98.6  nskm\frac{τ}{L} = \frac{0.493\; μs}{5\; km} = 98.6\; \frac{ns}{km}

The expression to calculate spectral width of source:

σm=σλ×M×Lσ_m = σ_λ\times M\times L

σm=1×80×5=0.4  nskmσ_m = 1\times 80\times 5 = 0.4 \; \frac{ns}{km}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment