Consider a silicon p-n junction at T = 300 K with doping concentrations of NA = 10^16 cm-3 . Given that the built-in voltage Vbi = 0.7 V, determine the doping concentration of the n-side of the junction.
b) Derive an expression for the width of the depletion region in terms of Vbi and the maximum electric field |𝐸𝑚| at x = 0
c) Derive an expression for xp in terms of Vbi. Hence, find a numerical value for |𝐸𝑚| and the width of the depletion region
Given,
Temperature (T)= 300K
Doping concentration "(N_A)=10^{16}cm^{-3}"
Built in voltage "(V_{bi})=0.7V"
"V_{bi}=\\frac{K_B T}{e}\\ln (\\frac{N_n}{N_p})"
"\\Rightarrow V_{bi}=\\frac{K_B T}{e}\\ln (\\frac{N_AN_D}{n_i^2})"
"n_i= 1.5\u00d710^{10}cm^{\u22123}" ,in the quasi-neutral p-region
Let the doping of n-type Si be "(N_D)=?"
Now, substituting the values,
"V_{bi}=\\frac{K_B T}{e}\\ln (\\frac{N_AN_D}{n_i^2})"
Now, substituting the values,
"\\Rightarrow V_{bi}=\\frac{K_B T}{e}\\ln (\\frac{N_AN_D}{n_i^2})"
"\\Rightarrow 0.7V=\\frac{1.4\\times 10^{-23}\\times 300}{1.6\\times 10^{-19}}\\ln (\\frac{10^{16}N_D}{(1.5\\times 10^{10})^2})"
"\\Rightarrow 0.7=0.026\\ln{\\frac{N_D}{2.25\\times 10^{4}}}"
"\\Rightarrow 26.92 =\\ln{\\frac{N_D}{2.25\\times 10^{4}}}"
"\\Rightarrow e^{26.92}=\\frac{N_D}{2.25\\times 10^4}"
"\\Rightarrow 4.5\\times 10^{11}\\times 2.25\\times 10^4=N_D"
"\\Rightarrow N_D=10.125\\times 10^{15}"
Comments
Leave a comment