Question #290842

Four bodies are located in a region where g = 9.67 m/s2

.Body1 = 750 gm; Body2 = 4 poundals; body3 = 4.5 N and body4 = 32.2 lbf.


a) What is the total mass expressed in lbm?


b) What will be the total weight (lbf) if the bodies are located 15,000 ft above

the earth’s surface? (gravitational acceleration decreases by 0.003 ft/s2

for every 1000 ft ascent above sea level)


c) At what distance (miles) from the earth’s surface will these objects weigh

zero.


1
Expert's answer
2022-01-26T17:47:12-0500

1m/s6=3.28fts21lbf=1lbm×31.72fts2(9.67ms2)1kg=2.205lbm1ms2=3.28fts21poundas=0.128235N9.67ms2=31.72fts25280ft=1mile1m/s^6 = 3.28fts^{-2}\\ 1lbf=1lbm \times 31.72fts^{-2}(9.67ms^{-2})\\1kg=2.205lbm\\1ms^{-2}=3.28fts^{-2}\\1poundas=0.128235N\\9.67ms^{-2}=31.72fts^{-2}\\5280ft=1mile


(a) Body 1=750g=0.75kg             =(0.75×2.205)lbm=1.6537lbm(a)~Body~1=750g=0.75kg\\ ~~~~~~~~~~~~~=(0.75 \times2.205)lbm=1.6537lbm



 Body 2=4 poundals                   =(4×0.138235)N=0.55294N0.55294N÷9.67=0.0572kg=(0.0572×2.205)lbm=0.1261lbm~Body~2=4~poundals\\~~~~~~~~~~~~~~~~~~~=(4\times 0.138235)N=0.55294N\\\therefore0.55294N\div9.67=0.0572kg=(0.0572\times2.205)lbm=0.1261lbm



 Body 3=4.5N      4.5÷9.67=0.4654kg=(0.4654×2.205)lbm=1.1262lbm~Body~3=4.5N\\ ~~~~~~4.5\div 9.67=0.4654kg=(0.4654\times 2.205)lbm=1.1262lbm



 Body 4=32.2lbf  1lbf=1lbm×31.72fts2    32.2÷31.72=1.0151ibm~Body ~4=32.2lbf\\~~1lbf=1lbm \times 31.72fts^{-2}\\ \implies32.2\div31.72=1.0151ibm


Total mass=1.6537+0.1261+1.1262+1.0151=3.9211lbmTotal~mass=1.6537+0.1261+1.1262+1.0151=3.9211lbm



(b) at 15 000ft g decreses by=0.003×15 0001000=0.045fts2g at that location=31.720.045=31.675fts2the total weight at =the location=3.9211×31.675=124.2lbf(b) ~at~15~000ft~g~decreses~by=\frac{0.003\times15~000}{1000}=0.045fts^{-2}\\g~at~that~location=31.72-0.045=31.675fts^{-2}\\the~total~weight~at ~=the~location=3.9211\times31.675=124.2lbf


(c) for the object toweigh zero,g=0decrease in gravity 0.003×h1000=31.72h=10 573 333.33ft=(10 573 333.33×5280)miles=2002.53miles(c)~for~the ~object~to weigh~zero, g=0\\\therefore decrease~in~gravity~\frac{0.003\times h}{1000}=31.72\\h=10~573~333.33ft=(10~573~333.33\times5280)miles=2002.53miles


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS