Question #236817
. In a duct in which air is flowing, a normal shock wave occurs at a Mach
number of 1.5. The static pressure and temperature upstream of the shock wave are 170 kN/m2
and 23
1
Expert's answer
2021-09-13T16:52:11-0400

Let subscripts 1 and 2 represent flow conditions upstream and downstream of the shock wave respectively.

Mach number, M1=1.5M_1=1.5

Upstream pressure, p1=170  kN/m2p_1 = 170 \; kN/m^2

Upstream temperature, T1=23+273=296  KT_1 = 23 + 273 = 296 \;K

γ = 1.4

(i) Pressure, temperature and Mach number downstream of the shock :

p2p1=2γM12(γ1)γ+1=2×1.4×1.52(1.41)1.4+1=6.30.42.4=2.458p2=170×2.458=417.86  kN/m2T2T1=[(γ1)M12+2][2γM12(γ1)](γ+1)2M12=[(1.41)×1.52+2][2×1.4×1.52(1.41)](1.4+1)2×1.52=2.9×5.912.96=1.32T2=296×1.32=390.72  K=117.72  °CM22=(γ1)M12+22γM12(γ1)=(1.41)×1.52+22×1.4×1.52(1.41)=2.95.9=0.49M2=0.7\frac{p_2}{p_1} = \frac{2γM_1^2 -(γ-1)}{γ+1} \\ = \frac{2 \times 1.4 \times 1.5^2 -(1.4-1)}{1.4+1} \\ = \frac{6.3-0.4}{2.4} \\ = 2.458 \\ p_2 = 170 \times 2.458 = 417.86 \;kN/m^2 \\ \frac{T_2}{T_1} = \frac{[(γ-1)M_1^2 +2][2γM_1^2 -(γ-1)]}{(γ+1)^2M_1^2} \\ = \frac{[(1.4-1) \times 1.5^2 +2][2 \times 1.4 \times 1.5^2 -(1.4-1)]}{(1.4+1)^2 \times 1.5^2} \\ = \frac{2.9 \times 5.9 }{12.96 } \\ = 1.32 \\ T_2 = 296 \times 1.32 = 390.72 \;K = 117.72 \;°C \\ M^2_2 = \frac{(γ-1)M_1^2 +2}{2γM_1^2 -(γ-1)} \\ = \frac{(1.4-1) \times 1.5^2 +2}{2 \times 1.4 \times 1.5^2 -(1.4-1)} \\ = \frac{2.9}{5.9} \\ = 0.49 \\ M_2 = 0.7

(ii) Strength of shock :

Strength of shock =p2p11=2.4581=1.458= \frac{p_2}{p_1} -1 = 2.458 -1=1.458


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS