Question #235871

. A turbine, operating under steady-flow conditions, receives 4500 kg of

steam per hour. The steam enters the turbine at a velocity of 2800 m/min, an elevation of 5.5 m

and a specific enthalpy of 2800 kJ/kg. It leaves the turbine at a velocity of 5600 m/min, an elevation

of 1.5 m and a specific enthalpy of 2300 kJ/kg. Heat losses from the turbine to the surroundings

amout to 16000 kJ/h.

Determine the power output of the turbine.



1
Expert's answer
2021-09-13T18:22:37-0400

Gives

Steam rate flow

m˙=45003600=1.25kg/sec\dot{m}=\frac{4500}{3600}=1.25kg/sec

Steam velocity at inlet

v1=280060=46.67m/secv_1=\frac{2800}{60}=46.67m/sec

Velocity of exis v2=560060=93.34m/secv_2=\frac{5600}{60}=93.34m/sec

Elevation at inlet z1=5.5mz_1=5.5m

Elevation at exis z2=1.5mz_2=1.5m


Q=16000kJ/hr=160003600=4.45KJ/secQ=16000kJ/hr=\frac{16000}{3600}=4.45KJ/sec

Enthalpy

h1=2800KJ/kgh_1=2800KJ/kg

h2=2300KJ/kgh_2=2300KJ/kg

Turbine operates under steady flow condition


Qws=h2h1+12(v22v12)+g(z2z1)J/kgsecQ-w_s=h_2-h_1+\frac{1}{2}(v_2^2-v_1^2)+g(z_2-z_1)J/kgsec

4.45ws=(23002800)+(93.34246.672)2×1000+9.8(1.55.5)10004.45-w_s=(2300-2800)+\frac{(93.34^2-46.67^2)}{2\times1000}+\frac{9.8(1.5-5.5)}{1000}

ws=4.45[(23002800)+(93.34246.672)2×1000+9.8(1.55.5)1000]w_s=4.45-[(2300-2800)+\frac{(93.34^2-46.67^2)}{2\times1000}+\frac{9.8(1.5-5.5)}{1000}]

ws=4.45+500+3.26710.0392=507.67KWw_s=4.45+500+3.2671-0.0392=507.67KW


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS