Given,
External diameter (R)=100mm=100×10−3m
Internal diameter (r)=50mm=50×10−3m
r1=0.025
Diameter of steel wire (d)=1mm=10−3m
Applied stress=20MN/m=20×106N/m
Outside diameter (d)=120mm=120×10−3m
(r2)=0.06m
Internal pressure (σr)=30MN/m=30×106N/m
⇒−30=A−0.025B=A−1600B...(i)
⇒0=A−0.062B=A−278B...(ii)
From equation (i) and (ii),
⇒30=1322B
⇒B=132230=0.0227
⇒A=278B
⇒A=278×0.0227=6.32
For calculating the stress, the wire and cylinder should be treated like a single thick cylinder with internal diameter 50mm and 120mm external diameter.
Hoop stress at 25mm is (σr1)=A+1600B=42.7MN/m2
Hoop stress at 60mm is (σr2)=15.4MN/m2
⇒σr=−2r2r2−R2Tlog(r2−R12R32−R12)=p
⇒σr=2×0.0520.052−0.0252Tloge(0.052−0.02520.062−0.0252)
⇒σr=5018.75×20loge(18.7529.75)
⇒σr=−3.45MN/m2
So, for the wire winding, the stress in the tube
σr=−3.45 at r=0.05
and σr=0 to r=0.025
σr=A−400B
⇒−3.45=A−400B....(iii)
and 0=A−1600B...(iv)
Now, solving equation (iii) and equation (iv)
−3.45=1200B
⇒B=2.88×10−3 and A=−4.6
Hoop stress at 25mm is (σr1)=A+1600B=−9.2MN/m2
Hoop stress at 50mm is =A+400B=−5.75MN/m2
Hence, the internal pressure at
r=25mm, σH=42.7−9.2=33.5MN/m2
r=50mm, σH=15.4−5.75=9.65MN/m2
So, the maximum hoop stress 33.5MN/m2
Comments
Leave a comment