Answer to Question #229142 in Molecular Physics | Thermodynamics for Unknown346307

Question #229142

A thick cylinder of 100 mm external diameter and 50 mm internal diameter is wound with

steel wire of 1 mm diameter, initially stressed to 20 MN/m’ until the outside diameter is

120 mm. Determine the maximum hoop stress set up in the cylinder if an internal pressure of

30 MN/m’ is now applied.


1
Expert's answer
2021-08-27T08:30:10-0400

Given,

External diameter (R)=100mm=100×103m(R)=100 mm=100\times 10^{-3}m

Internal diameter (r)=50mm=50×103m(r)= 50 mm=50\times 10^{-3}m

r1=0.025r_1=0.025

Diameter of steel wire (d)=1mm=103m(d)=1mm=10^{-3}m

Applied stress=20MN/m=20×106N/m= 20MN/m =20\times 10^6N/m

Outside diameter (d)=120mm=120×103m(d)=120mm =120\times 10^{-3}m

(r2)=0.06m(r_2)=0.06m

Internal pressure (σr)=30MN/m=30×106N/m(\sigma_r)=30MN/m = 30\times 10^6N/m


30=AB0.025=A1600B...(i)\Rightarrow -30=A-\frac{B}{0.025}=A-1600B...(i)


0=AB0.062=A278B...(ii)\Rightarrow 0=A-\frac{B}{0.06^2}=A-278B ...(ii)

From equation (i) and (ii),

30=1322B\Rightarrow 30=1322B


B=301322=0.0227\Rightarrow B=\frac{30}{1322}=0.0227


A=278B\Rightarrow A=278B

A=278×0.0227=6.32\Rightarrow A=278\times 0.0227 =6.32


For calculating the stress, the wire and cylinder should be treated like a single thick cylinder with internal diameter 50mm and 120mm external diameter.

Hoop stress at 25mm is (σr1)=A+1600B=42.7MN/m2(\sigma_{r_1})=A+1600B=42.7MN/m^2


Hoop stress at 60mm is (σr2)=15.4MN/m2(\sigma_{r_2})=15.4MN/m^2


σr=r2R22r2Tlog(R32R12r2R12)=p\Rightarrow \sigma_r=-\frac{r^2-R^2}{2r^2}T\log(\frac{R_3^2-R_1^2}{r^2-R_1^2})=p


σr=0.0520.02522×0.052Tloge(0.0620.02520.0520.0252)\Rightarrow \sigma_r=\frac{0.05^2-0.025^2}{2\times 0.05^2}T\log_e(\frac{0.06^2-0.025^2}{0.05^2-0.025^2})


σr=18.75×2050loge(29.7518.75)\Rightarrow \sigma_r = \frac{18.75\times 20}{50}\log_e(\frac{29.75}{18.75})


σr=3.45MN/m2\Rightarrow \sigma_r=-3.45MN/m^2

So, for the wire winding, the stress in the tube

σr=3.45\sigma_r=-3.45 at r=0.05r=0.05

and σr=0\sigma_r =0 to r=0.025r=0.025

σr=A400B\sigma _r=A-400B

3.45=A400B....(iii)\Rightarrow -3.45=A-400B ....(iii)

and 0=A1600B...(iv)0=A-1600B...(iv)

Now, solving equation (iii) and equation (iv)

3.45=1200B-3.45=1200B

B=2.88×103\Rightarrow B=2.88\times 10^{-3} and A=4.6A=-4.6

Hoop stress at 25mm is (σr1)=A+1600B=9.2MN/m2(\sigma_{r_1})=A+1600B=-9.2MN/m^2

Hoop stress at 50mm is =A+400B=5.75MN/m2=A+400B =-5.75 MN/m^2

Hence, the internal pressure at

r=25mm, σH=42.79.2=33.5MN/m2\sigma_H=42.7-9.2=33.5MN/m^2

r=50mm,r=50mm, σH=15.45.75=9.65MN/m2\sigma_H=15.4-5.75 =9.65MN/m^2

So, the maximum hoop stress 33.5MN/m233.5MN/m^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment