Quantity of air delivered by the compressor
"m= \\frac{12}{60}= 0.2 \\;kg\/s"
Conditions of air at the inlet 1:
Pressure "p_1=1 \\;bar = 10^5 \\;N\/m^2"
Specific volume "v_1=0.5 \\;m^3\/kg"
Velocity "C_1=12 \\;m\/s"
Temperature at inlet:
"T_1= \\frac{p_1v_1}{R} = \\frac{10^5 \\times 0.5}{287}=174.55 \\;K"
Conditions of air at the outlet 2:
Pressure "p_2= 8 \\;bar = 8 \\times 10^5 \\;N\/m^2"
Specific volume "v_2=0.14 \\;m^3\/kg"
Velocity "C_2= 90 \\;m\/s"
Increase in enthalpy of air passing through the compressor,
"(h_2-h_1)=150 \\;kJ\/kg"
Heat lost to the surroundings,
"Q= -700 \\;kJ\/min = -11.67 \\;kJ\/s"
(i) Motor power required to drive the compressor:
Applying energy equation to the system,
"m(h_1+ \\frac{C_1^2}{2} + Z_1g) + Q = m(h_2 + \\frac{C_2^2}{2} + Z_2g)+ W \\\\\n\nZ_1=Z_2 \\\\\n\nm(h_1 + \\frac{C_1^2}{2}) + Q = m(h_2 + \\frac{C_2^2}{2}) + W \\\\\n\nW = m[(h_1-h_2) + \\frac{C^2_1-C^2_2}{2}] +Q \\\\\n\n= 0.2[-150 + \\frac{12^2 -90^2}{2 \\times 1000}] + (-11.67) \\\\\n\n= -42.46 \\;kJ\/s = -42.46 \\;kW"
Motor power required (or work done on the air) = 42.46 kW
(ii) Ratio of inlet to outlet pipe diameter, "\\frac{d_1}{d_2}:"
The mass of air passing through the compressor is given by
"m = \\frac{A_1C_1}{v_1}= \\frac{A_2C_2}{v_2} \\\\\n\n\\frac{A_1}{A_2}= \\frac{C_2}{C_1} \\times \\frac{v_1}{v_2} = \\frac{90}{12} \\times \\frac{0.5}{0.14}=26.78 \\\\\n\n(\\frac{d_1}{d_2})^2 = 26.78 \\\\\n\n\\frac{d_1}{d_2}= 5.175"
Hence ratio of inlet to outlet pipe diameter = 5.175.
Comments
Leave a comment