Solution:-
The disc gains heat "Q_{in}" due to thermal conductivity from the surrounding and losses heat "Q_{out}" due to radiation .
Thus, according to the Stefan Boltzmann law
Losses rate
"\\frac{dQ_{out}}{dt}=\\pi r^2\\sigma(T_{sur}^3-T^4)\\\\\\sigma=5.56\\times10^{-8}W\/m^2K^4\\\\"
Steady state
"\\frac{dQ_{out}}{dt}=\\frac{dQ_{in}}{dt}"
"\\frac{dT}{dt}=\\frac{\\pi r^2\\sigma T_{sur}^4}{mc}" "=\\frac{\\pi r^2\\sigma T^4}{mc}"
Solution thi equation
"T(t)=\\frac{1}{3\\sqrt{{\\frac{\\pi r^2\\sigma t}{mc}}+\\frac{1}{(T_{start}-T_{sur})^3}}}+T_{sur}"
t=infinite
Put value
"T(t)=T_{sur}"
Comments
Leave a comment