Question 2
(a) Given that A ~ = (x + 2y + 4z)ˆ
i + (2x - 3y- z)ˆj +(4x-y + 2z)kˆ
(i). Show that the vector field A ~ is irrotational
(ii). Find the scalar potential φ such that A~ = ∇φ, if φ(0, 0, 0) = 1
1)
"\\nabla \u00d7\\vec A=\\vec 0,"
"\\nabla\u00d7\\vec A=(\\frac{\\partial A_z}{\\partial y}-\\frac{\\partial A_y}{\\partial z})\\vec i+(\\frac{\\partial A_x}{\\partial z}-\\frac{\\partial A_z}{\\partial x})\\vec j+(\\frac{\\partial A_y}{\\partial x}-\\frac{\\partial A_x}{\\partial y})\\vec k=(-1+1)\\vec i+(4-4)\\vec j+(2-2)\\vec k=\\vec 0,"
2)
"\\nabla \\varphi=\\frac{\\partial A}{\\partial x}\\vec i+\\frac{\\partial A}{\\partial y}\\vec j+\\frac{\\partial A}{\\partial z}\\vec k=\\vec i-3\\vec j+2\\vec k."
Comments
Leave a comment