Question #224077

) If F ~ = (3x2y-y2)ˆi + (2y - 4x)ˆj, evaluate \int Fd~r along the curve C in the xy plane whose parametric representation is x = t and y = t3

from the point (1, 1) to (2, 8)



1
Expert's answer
2021-08-10T17:59:32-0400

Gives

W=F.drW=\smallint F.dr

F=3(x2yy2)i^+(2y4x)j^F=3(x^2y-y^2)\hat{i}+(2y-4x)\hat{j}


W=(3(x2yy2)i^+(2y4x)j^).(dxi^+dyj^)W=(3(x^2y-y^2)\hat{i}+(2y-4x)\hat{j}).(dx\hat{i}+dy \hat{j})

W=(x3yy2x)+(y24xy)W=(x^3y-y^2x)+(y^2-4xy)

Poin(1,1) (2,8)


W=(23×882×2)(13×112×1)+(824×2×8)(124×1×1)W=(2^3\times8-8^2\times2)-(1^3\times1-1^2\times1)+(8^2-4\times2\\\times 8)-(1^2-4\times1\times1)


W=(23×812×1)+(824×1×1)+(824×2×84×1×1)W=(2^3\times8-1^2\times1)+(8^2-4\times1\times1)+(8^2-4\times2\times8-4\times1\times1)

W=63+60+64-64-4=119N











Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS