The pressure and temperature of mixture of 4 kg of O2 and 6 kg of N2 are 4 bar
and 27°C respectively. For the mixture determine the following ) :i) The mole
fraction of each component ; (ii) The average molecular weight; (iii) The specific
gas constant ; (iv) The volume and density ;(v) The partial pressures and partial
volumes
Mole fraction of oxygen
"n_{o_2}=\\frac{gm weight}{moleculer weight}=\\frac{4}{32}=0.125"
"n_{N_2}=\\frac{gm weight}{moleculer weight}=\\frac{6}{28}=0.214"
Molecular weight
Molecular weight for
oxygen =2"\\times" atomic weights
"(W_m)_{o_2}=2\\times16=32"
Nitrogen molecular weight
="2\\times" atomic weights
"(W_m)_{N_2}=2\\times14=28"
Specific gas constan
"R_s=\\frac{R}{M{_o}_{2}}=\\frac{8.31}{32}=0.2596"
"R_s=\\frac{R}{M{_N}_{2}}=\\frac{8.31}{28}=0.296"
Volume and density
"V=\\frac{nRT}{P}"
"V_o=\\frac{0.125\\times8.314\\times300}{4}=77.94m^3"
"V_N=\\frac{0.214\\times8.314\\times300}{4}=133.43m^3"
"d_o=\\frac{M}{V}=\\frac{32}{77.94}=0.4105kg\/m^3"
"d_o=\\frac{M}{V}=\\frac{28}{133.43}=0.2098kg\/m^3"
Partial pressure
"P_o=n\\times" pressure
"P_o=0.125\\times4=0.5 bar"
"P_N=n\\times" pressure
"P_N=" "0.214\\times4=0.856" bar
Partial volume
"V_o=n\\times" volume
"V_o=0.125\\times77.94=9.74kg"
"V_N=n\\times" volume
"V_N=0.214\\times133.43=28.55kg"
Comments
Leave a comment