Question #213401

An insulated water heater operating at steady state has two inlets and one 

outlet. At inlet 1, liquid water enters at 7 bar, 42oC, and a mass flow rate of 70 

kg/s. At inlet 2, wet vapor at 7 bar with a quality of 98% is injected. At outlet, 

saturated liquid at 7 bar exits the water heater. Ignoring heat transfer with the 

surroundings and neglecting kinetic and potential energy effects, determine 

the mass flow rate, in kg/s, at inlet 2


1
Expert's answer
2021-07-07T11:39:44-0400

Answer:-

At inlet 1 ,

P1=7 barT1=42oCm1=70kg/sP_1= 7 \ bar \\ T_1 =42^o C \\ m_1=70 kg/s

At inlet 2

P2=7 barx2=0.98P_2=7 \ bar\\ x_2=0.98\\

at exit 3 , p3=7 barp_3=7 \ bar



at T1 = 42o C from saturated stream tables ,

hf1=167.57 + (188.45-167.57) [42404540]=175.9kJ/kg[\frac{42-40}{45-40}]=175.9kJ/kg

Vf1=1.0078×103+(1.0099×1031.0078×103)×[42404540]=1.0086×103m3/kgV_{f1}=1.0078\times 10^{-3}+(1.0099\times10^{-3}-1.0078\times10^{-3})\times [\frac{42-40}{45-40}]\\=1.0086\times10^{-3}m^3/kg

PSat1=0.07384+(0.095930.07384)×[42404540]=0.08268barP_{Sat1}=0.07384+(0.09593-0.07384)\times [\frac{42-40}{45-40}] \\=0.08268 bar


At P2=7P_2=7 bar from saturated steam tables,

hf2=697.22kJ/kghfs2=2066.3KJ/Kgh2=hf2+X2hfs2h_{f2}=697.22 kJ/kg\\ h_{fs2}=2066.3 KJ/Kg\\ h_2=h_{f2}+X_2h_{fs2}

h2=697.22+0.98×2066.3h22722.2KJ/Kgh_2=697.22+0.98\times2066.3\\ h_22722.2 KJ/Kg


at p3=7 barp_3 =7 \ bar from saturated steam tables ,

h3=hf3h_3=h_{f3}

h3=697.22KJ/kgh_3=697.22KJ/kg (\therefore saturated liquid state)


By mass rate balance under steady state

m1+m2+m3=0.....(1)m_1+m_2+m_3=0.....(1)

By energy rate balance equation

0=QcvWcv+m1(h1+v122+gz1)+m2(h2+v222+gz2)m3(h3+v322+gz3)0=Q_{cv}-W_{cv}+m_1(h_1+\frac{v_1^2}{2}+gz_1)+m_2(h_2+\frac{v_2^2}{2}+gz_2)-m_3(h_3+\frac{v_3^2}{2}+gz_3)

\therefore work done , heat transfer , kinetic and

potential energies are negligible

m1h1+m2h2+m3h3=0...........(2)m_1h_1+m_2h_2+m_3h_3=0...........(2)


using (1) in (2)

m1h1+m2h2(m1+m2)h3=0m_1h_1+m_2h_2-(m_1+m_2)h_3=0\\

on putting the values

m2=70×(697.22176.6)(2722.2697.22)m_2=70\times\frac{(697.22-176.6)}{(2722.2-697.22)}

m2=18 kg/sm_2=18 \ kg/s

Mass flow rate 2 is m2=18 kg/sm_2=18 \ kg/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS