The charges and coordinates of two charged particles held fixed in the x-y plane are: q1 = +3.0x10^-6 C; x = 3.5, y = 0.5 cm, and q2 = - 4.0x10-6 C; x = - 2.0 cm, y = 1.5 cm. (a) Find the magnitude and direction of the force on q2. (b) where could you locate the third charge q3 = + 4.0x10^-6 C such the total force on q2 is zero?
a)
"q_1=+3 \\times 10^{-6} \\;(3.5, 0.5) \\\\\n\nq_2=-4 \\times 10^{-6} \\;(-2,1.5) \\\\\n\nForce \\;F = \\frac{k|q_1||q_2|}{d^2} \\\\\n\nF= \\frac{k \\times 3 10^{-6} \\times 4 \\times 10^{-6}}{(\\sqrt{(3.5 +2)^2+(0.5-1.5)^2})^2} \\\\\n\n= \\frac{9 \\times 10^9 \\times 12 \\times 10^{-12}}{(\\sqrt{5.5^2+1^2})^2} \\\\\n\n= \\frac{9 \\times 12 \\times 10^{-3}}{(\\sqrt{31.25})^2} \\\\\n\n= \\frac{108 \\times 10^{-3}}{5.6^2} \\\\\n\n= 0.344 \\times 10^{-2} \\;N"
Its direction is toward the charge q2.
b) Given
"q_3=-4\\times 10^{-6}"
Force on "q_2" is zero
"Net \\;force = \\frac{kq_1q_2}{5.6^2}+ \\frac{kq_2q_3}{r^2}=0 \\\\\n\n\\frac{q_1q_2}{5.6^2}+ \\frac{q_2q_3}{r^2}=0 \\\\\n\n\\frac{q_1}{5.6^2} + \\frac{q_3}{r^2} = 0 \\\\\n\n\\frac{3 \\times 10^{-6}}{5.6^2}+ \\frac{(-4) \\times 10^{-6}}{r^2}=0 \\\\\n\n\\frac{3}{5.6^2}- \\frac{4}{r^2}=0 \\\\\n\nr^2=\\frac{4}{3} \\times 5.6^2 \\\\\n\nr = 6.119 \\;cm"
Comments
Leave a comment