a)
q 1 = + 3 × 1 0 − 6 ( 3.5 , 0.5 ) q 2 = − 4 × 1 0 − 6 ( − 2 , 1.5 ) F o r c e F = k ∣ q 1 ∣ ∣ q 2 ∣ d 2 F = k × 31 0 − 6 × 4 × 1 0 − 6 ( ( 3.5 + 2 ) 2 + ( 0.5 − 1.5 ) 2 ) 2 = 9 × 1 0 9 × 12 × 1 0 − 12 ( 5. 5 2 + 1 2 ) 2 = 9 × 12 × 1 0 − 3 ( 31.25 ) 2 = 108 × 1 0 − 3 5. 6 2 = 0.344 × 1 0 − 2 N q_1=+3 \times 10^{-6} \;(3.5, 0.5) \\
q_2=-4 \times 10^{-6} \;(-2,1.5) \\
Force \;F = \frac{k|q_1||q_2|}{d^2} \\
F= \frac{k \times 3 10^{-6} \times 4 \times 10^{-6}}{(\sqrt{(3.5 +2)^2+(0.5-1.5)^2})^2} \\
= \frac{9 \times 10^9 \times 12 \times 10^{-12}}{(\sqrt{5.5^2+1^2})^2} \\
= \frac{9 \times 12 \times 10^{-3}}{(\sqrt{31.25})^2} \\
= \frac{108 \times 10^{-3}}{5.6^2} \\
= 0.344 \times 10^{-2} \;N q 1 = + 3 × 1 0 − 6 ( 3.5 , 0.5 ) q 2 = − 4 × 1 0 − 6 ( − 2 , 1.5 ) F orce F = d 2 k ∣ q 1 ∣∣ q 2 ∣ F = ( ( 3.5 + 2 ) 2 + ( 0.5 − 1.5 ) 2 ) 2 k × 31 0 − 6 × 4 × 1 0 − 6 = ( 5. 5 2 + 1 2 ) 2 9 × 1 0 9 × 12 × 1 0 − 12 = ( 31.25 ) 2 9 × 12 × 1 0 − 3 = 5. 6 2 108 × 1 0 − 3 = 0.344 × 1 0 − 2 N
Its direction is toward the charge q2 .
b) Given
q 3 = − 4 × 1 0 − 6 q_3=-4\times 10^{-6} q 3 = − 4 × 1 0 − 6
Force on q 2 q_2 q 2 is zero
N e t f o r c e = k q 1 q 2 5. 6 2 + k q 2 q 3 r 2 = 0 q 1 q 2 5. 6 2 + q 2 q 3 r 2 = 0 q 1 5. 6 2 + q 3 r 2 = 0 3 × 1 0 − 6 5. 6 2 + ( − 4 ) × 1 0 − 6 r 2 = 0 3 5. 6 2 − 4 r 2 = 0 r 2 = 4 3 × 5. 6 2 r = 6.119 c m Net \;force = \frac{kq_1q_2}{5.6^2}+ \frac{kq_2q_3}{r^2}=0 \\
\frac{q_1q_2}{5.6^2}+ \frac{q_2q_3}{r^2}=0 \\
\frac{q_1}{5.6^2} + \frac{q_3}{r^2} = 0 \\
\frac{3 \times 10^{-6}}{5.6^2}+ \frac{(-4) \times 10^{-6}}{r^2}=0 \\
\frac{3}{5.6^2}- \frac{4}{r^2}=0 \\
r^2=\frac{4}{3} \times 5.6^2 \\
r = 6.119 \;cm N e t f orce = 5. 6 2 k q 1 q 2 + r 2 k q 2 q 3 = 0 5. 6 2 q 1 q 2 + r 2 q 2 q 3 = 0 5. 6 2 q 1 + r 2 q 3 = 0 5. 6 2 3 × 1 0 − 6 + r 2 ( − 4 ) × 1 0 − 6 = 0 5. 6 2 3 − r 2 4 = 0 r 2 = 3 4 × 5. 6 2 r = 6.119 c m
Comments