Question #200680

An electron is projected as in fig. 3-10 at a speed of 6.0106 m/s at an angle  of 45o ; E = 2.0103 N/C (directed upward), d = 2.0 cm, and l = 10.0 cm. (a) Will the electron strike either of the plates? (b) If it strikes a plate, where does it do so? 


1
Expert's answer
2021-05-30T13:21:53-0400


Acceleration of the electron will be:

a=eEm=3.516×1014  m/s2a = \frac{eE}{m} =3.516 \times 10^{14}\;m/s^2

This acceleration will be in the downward direction.

For horizontal direction:

t=lv0cos45=0.16×106cos45=2.357×108  st = \frac{l}{v_0cos45}=\frac{0.1}{6 \times 10^6cos45}=2.357 \times 10^{-8} \;s

The vertical distance traveled by the electron will be:

H=uyt12at2=(6×106sin45)×2.357×108+12(3.516×1014)×(2.357×108)2=0.1976  m=19.76  cmH = u_yt-\frac{1}{2}at^2 \\ = (6 \times 10^6sin45) \times 2.357 \times 10^{-8}+\frac{1}{2}(3.516 \times 10^{14}) \times (2.357 \times 10^{-8})^2=0.1976 \;m = 19.76 \;cm

which is much greater then d = 2 cm

Hence the electron will strike the plate.

Substitute H=d=0.02 m

0.02=(6×106sin45)t+12(2.516×1014)t20.02=(6 \times 10^6sin45)t+ \frac{1}{2}(2.516 \times 10^{14})t^2

Solve this quadratic equation to get:

t=4.0383×109  sx=6×106cos45×4.0383×109=0.01713  m=1.713  cmt = 4.0383 \times 10^{-9}\;s \\ x=6 \times 10^6cos45 \times 4.0383 \times 10^{-9}=0.01713 \;m=1.713 \;cm

So, the electron will strike 1.713 cm from the left.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS