The rms speed of the molecules of the gas can be found as follows:
v r m s = 3 R T M . v_{rms}=\sqrt{\dfrac{3RT}{M}}. v r m s = M 3 RT . Let the initial rms speed of the molecules of the gas will be:
v r m s , 1 = 3 R T 1 M . v_{rms,1}=\sqrt{\dfrac{3RT_1}{M}}. v r m s , 1 = M 3 R T 1 . Let the final rms speed of the molecules of the gas will be:
v r m s , 2 = 3 R T 2 M v_{rms,2}=\sqrt{\dfrac{3RT_2}{M}} v r m s , 2 = M 3 R T 2 Then, dividing the first expression by the second one and assuming that v r m s , 2 = 2 v r m s , 1 v_{rms,2}=2v_{rms,1} v r m s , 2 = 2 v r m s , 1 , we get:
v r m s , 1 2 v r m s , 1 = T 1 T 2 , \dfrac{v_{rms,1}}{2v_{rms,1}}=\sqrt{\dfrac{T_1}{T_2}}, 2 v r m s , 1 v r m s , 1 = T 2 T 1 , 1 4 = T 1 T 2 , \dfrac{1}{4}=\dfrac{T_1}{T_2}, 4 1 = T 2 T 1 , T 2 = 4 T 1 = 4 ⋅ 200 K = 800 K . T_2=4T_1=4\cdot200\ K=800\ K. T 2 = 4 T 1 = 4 ⋅ 200 K = 800 K .
Comments