Solution
Angular momentum of sphere about the point where it touches sorface
"L_1=I\\omega"
Moment of inertia about the point where where it touches the surface
"I=\\frac{2}{5}MR^2+MR^2=\\frac{7}{5}MR^2"
"L_1=\\frac{7}{5}MR^2\\omega\\\\and\\\\\\omega=\\frac{v}{R}\\\\so\\\\L_1=\\frac{7}{5}MvR"
Angur momentum of cylinder
"L_2=I\\omega"
And moment of inertia of cylinder about the point where it touches the path surface
"I=\\frac{1}{2}MR^2+MR^2=\\frac{3}{2}MR^2"
"L_2=\\frac{3}{2}MR^2\\omega"
"And \\\\\\omega=\\frac{v}{R}\\\\so\\\\L_2=\\frac{3}{2}MvR"
So "\\frac{L_1}{L_2}" Can be calculated as
"\\frac{L_1}{L_2}=\\frac{\\frac{7}{5}MvR}{\\frac{3}{2}MvR}\\\\"
So
"\\frac{L_1}{L_2}=\\frac{14}{15}"
Comments
Leave a comment