Question #139690
A monatomic ideal gas at 27°C undergoes an isobaric process from state A to B, followed by an isochoric process from state B to C. What is the total work done by the gas in these two processes? (A = 2 atm, 1 L; B = 2 atm, 2 L; C = 1 atm, 2 L)
1
Expert's answer
2020-10-25T18:50:12-0400

T=27°C=300KT = 27\degree{C} = 300K


A=2atm, 1L (i.e p1=2atm, V1=1L)B=2atm, 2L (i.e p2=2atm, V2=2L)C=1atm, 2L (i.e p3=1atm, V1=2L)A = 2atm, \ 1L\ (i.e \ p_1 =2\,atm,\ V_1 =1L )\\ B = 2atm, \ 2L\ (i.e \ p_2 =2\,atm,\ V_2 =2L )\\ C = 1atm, \ 2L\ (i.e \ p_3 =1\,atm,\ V_1 =2L )


ProcessAB=IsobaricProcessBC=IsochoricProcess_{A\to B}=Isobaric\\ Process_{B\to C}=Isochoric


Work during an isobaric process=p(V2V1)WAB=p(V2V1)WAB=2(21)WAB=2(1)WAB=2atmLWork\ during\ an\ isobaric\ process=p(V_2-V_1)\\ W_{A\to B} = p(V_2-V_1)\\ W_{A\to B} = 2(2-1)\\ W_{A\to B} = 2(1)\\ W_{A\to B} = 2\,atmL


Work during an isochoric process=0JWBC=0J=0atmLWork\ during\ an\ isochoric\ process=0J\\ W_{B\to C} = 0J = 0\,atmL

(This is because the volume is constant, hence no work is done on the surroundings)


Total Work Done=WAB+WBC=2atmL+0atmL=2atmL=2(101325Nm2/atm)(103m3/L)atmL=202.65J\begin{aligned} Total\ Work\ Done& = W_{A\to B} + W_{B\to C}\\ &= 2\,atmL + 0\,atmL\\ & = 2\,atmL\\ &= 2(101325Nm^2/atm)(10^{-3}m^3/L)atmL\\ &= 202.65J \end{aligned}


\therefore The Total Work-done by the gas in the two processes is 202.65J202.65J

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS