As per the question,
The volume of the box=1 c m 3 1cm^3 1 c m 3
Number of electrons n = 5.2 × 1 0 21 n=5.2\times 10^{21} n = 5.2 × 1 0 21
n = N V = 5.2 × 1 0 21 1 × 1 0 − 6 n=\dfrac{N}{V}=\dfrac{5.2\times 10^{21}}{1\times 10^{-6}} n = V N = 1 × 1 0 − 6 5.2 × 1 0 21 =5.2 × 1 0 27 5.2\times10^{27} 5.2 × 1 0 27
E F = h 2 8 m ( 3 n π ) 2 / 3 = ( 6.62 × 1 0 − 34 ) 2 8 × 9.1 × 1 0 – 31 ( 3 × 5.2 × 1 0 27 π ) 2 / 3 E_F=\dfrac{h^2}{8m}(\dfrac{3n}{\pi})^{2/3}=\dfrac{(6.62\times 10^{-34})^2}{8\times 9.1×10^{–31}}(\dfrac{3\times 5.2\times10^{27}}{\pi})^{2/3} E F = 8 m h 2 ( π 3 n ) 2/3 = 8 × 9.1 × 1 0 –31 ( 6.62 × 1 0 − 34 ) 2 ( π 3 × 5.2 × 1 0 27 ) 2/3
E F = 43.8244 × 2.08 × 3.0014 × 1 0 18 − 68 2.145 × 72.8 × 1 0 − 31 E_{F}=\dfrac{43.8244\times2.08\times3.0014\times10^{18-68}}{2.145\times72.8\times10^{-31}} E F = 2.145 × 72.8 × 1 0 − 31 43.8244 × 2.08 × 3.0014 × 1 0 18 − 68
E F = 273.6 × 1 0 − 50 156.2 × 1 0 − 31 E_{F}=\dfrac{273.6\times10^{-50}}{156.2\times10^{-31}} E F = 156.2 × 1 0 − 31 273.6 × 1 0 − 50
E F = 1.75 × 1 0 − 19 J E_{F}=1.75\times10^{-19}J E F = 1.75 × 1 0 − 19 J
SO, Fermi momentum P F = 2 m E F P_{F}=\sqrt{2mE_F} P F = 2 m E F
P F = 2 × 9.1 × 1 0 − 31 × 1.75 × 1 0 − 19 = 31.85 × 1 0 50 P_{F}=\sqrt{2\times9.1\times 10^{-31}\times1.75\times 10^{-19}}=\sqrt{31.85\times 10^{50}} P F = 2 × 9.1 × 1 0 − 31 × 1.75 × 1 0 − 19 = 31.85 × 1 0 50
P F = 5.6 × 1 0 25 k g − m / s e c P_{F}=5.6\times 10^{25}kg-m/sec P F = 5.6 × 1 0 25 k g − m / sec
Comments