Determine the thickness tmin of cylindrical part of the tank and the hemispherical heads.
We need to determine the thickness of tmin of cylindrical part of the tank and the hemispherical heads.
Answer:
Given Information is
Diameter of the Tank = d = 300 mm
So, radius = r = 150 mm
(i). Minimum Thickness of Cylinder:
Let t be the thickness of the Cylindrical part of the Tank
Maximum tensile =
"= \\frac { p . r}{t}""t _{min}= \\frac { p . r}{\\sigma_{allow}} = \\frac {21 \\times 150}{60} = 5 mm"
Shear =
"Max = \\frac {p \\times r}{2t}""t _{min}= \\frac { p . r}{2 \\sigma_{allow}} =\\frac {21 \\times 150}{2 \\times 24} = 6.2 mm"
(ii). Minimum thickness of hemisphere:
Tension:
max =
"= \\frac { p . r}{2t}"
"t_{min} ="
"= \\frac { p . r}{{2 \\sigma_{allow}}}=\\frac {21 \\times 150}{2 \\times 60} = 2.5 mm"
Shear:
"\\tau _{max}" =
"= \\frac { p . r}{4t}"
"t_{min} = \\frac {pr}{4 \n\u03c4_{max} } = \\frac {21 \\times 150}{4 \\times 24} =3.125mm"
Comments
Leave a comment