Let's use the conservation of the momentum (we assume that the collision was complete inelastic and there is no rotation after collision)
m 1 v ⃗ 1 + m 2 v ⃗ 2 = ( m 1 + m 2 ) u ⃗ {m_1}{{\vec v}_1} + {m_2}{{\vec v}_2} = ({m_1} + {m_2})\vec u m 1 v 1 + m 2 v 2 = ( m 1 + m 2 ) u Choose the x-axis along the axis from which the angles in the condition of the problem is counted and y-axis is perpendicular to this direction. Then the equation for the moments will be
{ m 1 v 1 cos α 1 + m 2 v 2 cos α 2 = ( m 1 + m 2 ) u cos β m 1 v 1 sin α 1 + m 2 v 2 sin α 2 = ( m 1 + m 2 ) u sin β \begin{cases} {m_1}{v_1}\cos {\alpha _1} + {m_2}{v_2}\cos {\alpha _2} = ({m_1} + {m_2})u\cos \beta \\ {m_1}{v_1}\sin {\alpha _1} + {m_2}{v_2}\sin {\alpha _2} = ({m_1} + {m_2})u\sin \beta \end{cases} { m 1 v 1 cos α 1 + m 2 v 2 cos α 2 = ( m 1 + m 2 ) u cos β m 1 v 1 sin α 1 + m 2 v 2 sin α 2 = ( m 1 + m 2 ) u sin β Let's square both equations and find the sum
( m 1 v 1 sin α 1 + m 2 v 2 sin α 2 ) 2 + ( m 1 v 1 cos α 1 + m 2 v 2 cos α 2 ) 2 = ( m 1 + m 2 ) 2 u 2 {({m_1}{v_1}\sin {\alpha _1} + {m_2}{v_2}\sin {\alpha _2})^2} + {({m_1}{v_1}\cos {\alpha _1} + {m_2}{v_2}\cos {\alpha _2})^2} = {({m_1} + {m_2})^2}u^2 ( m 1 v 1 sin α 1 + m 2 v 2 sin α 2 ) 2 + ( m 1 v 1 cos α 1 + m 2 v 2 cos α 2 ) 2 = ( m 1 + m 2 ) 2 u 2 Expand the brackets and use that sin 2 α 1 + cos 2 α 1 = 1 {\sin ^2}{\alpha _1} + {\cos ^2}{\alpha _1} = 1 sin 2 α 1 + cos 2 α 1 = 1 and cos α 1 cos α 2 + sin α 1 sin α 2 = cos ( α 2 − α 1 ) \cos {\alpha _1}\cos {\alpha _2} + \sin {\alpha _1}\sin {\alpha _2} = \cos ({\alpha _2} - {\alpha _1}) cos α 1 cos α 2 + sin α 1 sin α 2 = cos ( α 2 − α 1 ) we get
( m 1 v 1 ) 2 + ( m 2 v 2 ) 2 + 2 m 1 m 2 v 1 v 2 cos ( α 2 − α 1 ) = ( m 1 + m 2 ) 2 u 2 {({m_1}{v_1})^2} + {({m_2}{v_2})^2} + 2{m_1}{m_2}{v_1}{v_2}\cos ({\alpha _2} - {\alpha _1}) = {({m_1} + {m_2})^2}{u^2} ( m 1 v 1 ) 2 + ( m 2 v 2 ) 2 + 2 m 1 m 2 v 1 v 2 cos ( α 2 − α 1 ) = ( m 1 + m 2 ) 2 u 2 Thus
u = ( m 1 v 1 ) 2 + ( m 2 v 2 ) 2 + 2 m 1 m 2 v 1 v 2 cos ( α 2 − α 1 ) m 1 + m 2 u = {{\sqrt {{{({m_1}{v_1})}^2} + {{({m_2}{v_2})}^2} + 2{m_1}{m_2}{v_1}{v_2}\cos ({\alpha _2} - {\alpha _1})} } \over {{m_1} + {m_2}}} u = m 1 + m 2 ( m 1 v 1 ) 2 + ( m 2 v 2 ) 2 + 2 m 1 m 2 v 1 v 2 c o s ( α 2 − α 1 ) Now return to the system and divide the second equation by the first, we get
tan β = m 1 v 1 sin α 1 + m 2 v 2 sin α 2 m 1 v 1 cos α 1 + m 2 v 2 cos α 2 \tan \beta = {{{m_1}{v_1}\sin {\alpha _1} + {m_2}{v_2}\sin {\alpha _2}} \over {{m_1}{v_1}\cos {\alpha _1} + {m_2}{v_2}\cos {\alpha _2}}} tan β = m 1 v 1 c o s α 1 + m 2 v 2 c o s α 2 m 1 v 1 s i n α 1 + m 2 v 2 s i n α 2 These two formulas are solving our problem. Let's use that is our case m 1 = m 2 = m {m_1} = {m_2} = m m 1 = m 2 = m
u = 1 2 v 1 2 + v 2 2 + 2 v 1 v 2 cos ( α 2 − α 1 ) u = {1 \over 2}\sqrt {v_1^2 + v_2^2 + 2{v_1}{v_2}\cos ({\alpha _2} - {\alpha _1})} u = 2 1 v 1 2 + v 2 2 + 2 v 1 v 2 cos ( α 2 − α 1 ) β = arctan ( v 1 sin α 1 + v 2 sin α 2 v 1 cos α 1 + v 2 cos α 2 ) \beta = \arctan ({{{v_1}\sin {\alpha _1} + {v_2}\sin {\alpha _2}} \over {{v_1}\cos {\alpha _1} + {v_2}\cos {\alpha _2}}}) β = arctan ( v 1 c o s α 1 + v 2 c o s α 2 v 1 s i n α 1 + v 2 s i n α 2 )
And do all calculations
u = 1 2 10 2 + 15 2 + 2 ⋅ 10 ⋅ 15 ⋅ 1 2 [ k m s ] = 5 19 2 [ k m s ] u = {1 \over 2}\sqrt {{{10}^2} + {{15}^2} + 2 \cdot 10 \cdot 15 \cdot {1 \over 2}} [{{{\rm{km}}} \over {\rm{s}}}] = {{5\sqrt {19} } \over 2}[{{{\rm{km}}} \over {\rm{s}}}] u = 2 1 10 2 + 15 2 + 2 ⋅ 10 ⋅ 15 ⋅ 2 1 [ s km ] = 2 5 19 [ s km ] β = arctan ( 10 ⋅ 1 2 + 15 ⋅ 1 10 ⋅ 3 2 + 15 ⋅ 0 ) = arctan ( 4 3 ) \beta = \arctan ({{10 \cdot {1 \over 2} + 15 \cdot 1} \over {10 \cdot {{\sqrt 3 } \over 2} + 15 \cdot 0}}) = \arctan ({4 \over {\sqrt 3 }}) β = arctan ( 10 ⋅ 2 3 + 15 ⋅ 0 10 ⋅ 2 1 + 15 ⋅ 1 ) = arctan ( 3 4 ) This is the magnitude and the direction (angle with the x-axis) of the composite body after collision. We can find the velosity (as the vector). Use that u ⃗ = ( u cos β , u sin β ) \vec u = (u\cos \beta ,u\sin \beta ) u = ( u cos β , u sin β ) and sin arctan x = x 1 + x 2 \sin \arctan x = {x \over {\sqrt {1 + {x^2}} }} sin arctan x = 1 + x 2 x and cos arctan x = 1 1 + x 2 \cos \arctan x = {1 \over {\sqrt {1 + {x^2}} }} cos arctan x = 1 + x 2 1 we get
u ⃗ = ( 5 19 2 ⋅ 3 19 , 5 19 2 ⋅ 4 19 ) [ k m s ] = ( 5 3 2 , 10 ) [ k m s ] \vec u = ({{5\sqrt {19} } \over 2} \cdot {{\sqrt 3 } \over {\sqrt {19} }},{{5\sqrt {19} } \over 2} \cdot {4 \over {\sqrt {19} }})[{{{\rm{km}}} \over {\rm{s}}}] = ({{5\sqrt 3 } \over 2},10)[{{{\rm{km}}} \over {\rm{s}}}] u = ( 2 5 19 ⋅ 19 3 , 2 5 19 ⋅ 19 4 ) [ s km ] = ( 2 5 3 , 10 ) [ s km ]
Comments
Leave a comment