Answer to Question #96525 in Mechanics | Relativity for Alao

Question #96525
Two bodies A and B of equal masses moving with velocities (10km/s, 030 °) and (15km/s,090°) impigne and coalesce. Find the initial velocity with which the composite body begins to move immediately after collision
1
Expert's answer
2019-10-16T09:17:29-0400

Let's use the conservation of the momentum (we assume that the collision was complete inelastic and there is no rotation after collision)


m1v1+m2v2=(m1+m2)u{m_1}{{\vec v}_1} + {m_2}{{\vec v}_2} = ({m_1} + {m_2})\vec u

Choose the x-axis along the axis from which the angles in the condition of the problem is counted and y-axis is perpendicular to this direction. Then the equation for the moments will be


{m1v1cosα1+m2v2cosα2=(m1+m2)ucosβm1v1sinα1+m2v2sinα2=(m1+m2)usinβ\begin{cases} {m_1}{v_1}\cos {\alpha _1} + {m_2}{v_2}\cos {\alpha _2} = ({m_1} + {m_2})u\cos \beta \\ {m_1}{v_1}\sin {\alpha _1} + {m_2}{v_2}\sin {\alpha _2} = ({m_1} + {m_2})u\sin \beta \end{cases}

Let's square both equations and find the sum


(m1v1sinα1+m2v2sinα2)2+(m1v1cosα1+m2v2cosα2)2=(m1+m2)2u2{({m_1}{v_1}\sin {\alpha _1} + {m_2}{v_2}\sin {\alpha _2})^2} + {({m_1}{v_1}\cos {\alpha _1} + {m_2}{v_2}\cos {\alpha _2})^2} = {({m_1} + {m_2})^2}u^2

Expand the brackets and use that sin2α1+cos2α1=1{\sin ^2}{\alpha _1} + {\cos ^2}{\alpha _1} = 1 and cosα1cosα2+sinα1sinα2=cos(α2α1)\cos {\alpha _1}\cos {\alpha _2} + \sin {\alpha _1}\sin {\alpha _2} = \cos ({\alpha _2} - {\alpha _1}) we get


(m1v1)2+(m2v2)2+2m1m2v1v2cos(α2α1)=(m1+m2)2u2{({m_1}{v_1})^2} + {({m_2}{v_2})^2} + 2{m_1}{m_2}{v_1}{v_2}\cos ({\alpha _2} - {\alpha _1}) = {({m_1} + {m_2})^2}{u^2}

Thus


u=(m1v1)2+(m2v2)2+2m1m2v1v2cos(α2α1)m1+m2u = {{\sqrt {{{({m_1}{v_1})}^2} + {{({m_2}{v_2})}^2} + 2{m_1}{m_2}{v_1}{v_2}\cos ({\alpha _2} - {\alpha _1})} } \over {{m_1} + {m_2}}}

Now return to the system and divide the second equation by the first, we get


tanβ=m1v1sinα1+m2v2sinα2m1v1cosα1+m2v2cosα2\tan \beta = {{{m_1}{v_1}\sin {\alpha _1} + {m_2}{v_2}\sin {\alpha _2}} \over {{m_1}{v_1}\cos {\alpha _1} + {m_2}{v_2}\cos {\alpha _2}}}

These two formulas are solving our problem. Let's use that is our case m1=m2=m{m_1} = {m_2} = m

u=12v12+v22+2v1v2cos(α2α1)u = {1 \over 2}\sqrt {v_1^2 + v_2^2 + 2{v_1}{v_2}\cos ({\alpha _2} - {\alpha _1})}β=arctan(v1sinα1+v2sinα2v1cosα1+v2cosα2)\beta = \arctan ({{{v_1}\sin {\alpha _1} + {v_2}\sin {\alpha _2}} \over {{v_1}\cos {\alpha _1} + {v_2}\cos {\alpha _2}}})

And do all calculations


u=12102+152+2101512[kms]=5192[kms]u = {1 \over 2}\sqrt {{{10}^2} + {{15}^2} + 2 \cdot 10 \cdot 15 \cdot {1 \over 2}} [{{{\rm{km}}} \over {\rm{s}}}] = {{5\sqrt {19} } \over 2}[{{{\rm{km}}} \over {\rm{s}}}]β=arctan(1012+1511032+150)=arctan(43)\beta = \arctan ({{10 \cdot {1 \over 2} + 15 \cdot 1} \over {10 \cdot {{\sqrt 3 } \over 2} + 15 \cdot 0}}) = \arctan ({4 \over {\sqrt 3 }})

This is the magnitude and the direction (angle with the x-axis) of the composite body after collision. We can find the velosity (as the vector). Use that u=(ucosβ,usinβ)\vec u = (u\cos \beta ,u\sin \beta ) and sinarctanx=x1+x2\sin \arctan x = {x \over {\sqrt {1 + {x^2}} }} and cosarctanx=11+x2\cos \arctan x = {1 \over {\sqrt {1 + {x^2}} }} we get


u=(5192319,5192419)[kms]=(532,10)[kms]\vec u = ({{5\sqrt {19} } \over 2} \cdot {{\sqrt 3 } \over {\sqrt {19} }},{{5\sqrt {19} } \over 2} \cdot {4 \over {\sqrt {19} }})[{{{\rm{km}}} \over {\rm{s}}}] = ({{5\sqrt 3 } \over 2},10)[{{{\rm{km}}} \over {\rm{s}}}]






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment