Let's write the condition clearly since the existing condition is incomplete and a little bit confusing:
If "\\textbf{c}_1"and "\\textbf{c}_2" are constant vectors and "\\lambda" is a constant scalar, show that
"\\textbf{h}=e^{-\\lambda x}[\\textbf{c}_1\\text{sin}(\\lambda x)+\\textbf{c}_2 \\text{cos}(\\lambda y)]." satisfies the partial equation
"\\frac{\\partial^2\\textbf{h}}{\\partial x^2}+\\frac{\\partial^2\\textbf{h}}{\\partial y^2}=0."Solution
Simply take the second partial derivatives of the given vector:
"\\Big(\\frac{\\partial^2\\textbf{}}{\\partial x^2}+\\frac{\\partial^2\\textbf{}}{\\partial y^2}\\Big)\\textbf{h}=\\\\\n\\space\\\\\n=\\Big[\\frac{\\partial^2\\textbf{}}{\\partial x^2}+\\frac{\\partial^2\\textbf{}}{\\partial y^2}\\Big]e^{-\\lambda x}[\\textbf{c}_1\\text{sin}(\\lambda x)+\\textbf{c}_2 \\text{cos}(\\lambda y)]=\\\\\n\\space\\\\\n=\\frac{\\partial^2\\textbf{}}{\\partial x^2}e^{-\\lambda x}\\textbf{c}_1\\text{sin}(\\lambda x)+\\frac{\\partial^2\\textbf{}}{\\partial x^2}e^{-\\lambda x}\\textbf{c}_2 \\text{cos}(\\lambda y)+\\\\\n\\space\\\\\n+\\frac{\\partial^2\\textbf{}}{\\partial y^2}e^{-\\lambda x}\\textbf{c}_1\\text{sin}(\\lambda x)+\\frac{\\partial^2\\textbf{}}{\\partial y^2}e^{-\\lambda x}\\textbf{c}_2 \\text{cos}(\\lambda y)=\\\\\n\\space\\\\\n=-2\\textbf{c}_1\\lambda^2e^{-\\lambda x}\\text{cos}(\\lambda x)+\\textbf{c}_2\\lambda^2e^{-\\lambda x}\\text{cos}(\\lambda y)+\\\\\n\\space\\\\\n+0-\\textbf{c}_2\\lambda^2e^{-\\lambda x}\\text{cos}(\\lambda y)=\\\\\n\\space\\\\\n=-2\\textbf{c}_1\\lambda^2e^{-\\lambda x}\\text{cos}(\\lambda x)." We can't show what we were asked to show if we wrote the correct condition :(
Comments
Leave a comment