Question #94198

If c1 and c2 are constant vectors and @ is a constant scalar, show that h=e^(-@x)(c1sin@x+c2cos@y)


1
Expert's answer
2019-09-11T10:41:31-0400

Let's write the condition clearly since the existing condition is incomplete and a little bit confusing:


If c1\textbf{c}_1and c2\textbf{c}_2 are constant vectors and λ\lambda is a constant scalar, show that

h=eλx[c1sin(λx)+c2cos(λy)].\textbf{h}=e^{-\lambda x}[\textbf{c}_1\text{sin}(\lambda x)+\textbf{c}_2 \text{cos}(\lambda y)].

satisfies the partial equation


2hx2+2hy2=0.\frac{\partial^2\textbf{h}}{\partial x^2}+\frac{\partial^2\textbf{h}}{\partial y^2}=0.

Solution


Simply take the second partial derivatives of the given vector:


(2x2+2y2)h= =[2x2+2y2]eλx[c1sin(λx)+c2cos(λy)]= =2x2eλxc1sin(λx)+2x2eλxc2cos(λy)+ +2y2eλxc1sin(λx)+2y2eλxc2cos(λy)= =2c1λ2eλxcos(λx)+c2λ2eλxcos(λy)+ +0c2λ2eλxcos(λy)= =2c1λ2eλxcos(λx).\Big(\frac{\partial^2\textbf{}}{\partial x^2}+\frac{\partial^2\textbf{}}{\partial y^2}\Big)\textbf{h}=\\ \space\\ =\Big[\frac{\partial^2\textbf{}}{\partial x^2}+\frac{\partial^2\textbf{}}{\partial y^2}\Big]e^{-\lambda x}[\textbf{c}_1\text{sin}(\lambda x)+\textbf{c}_2 \text{cos}(\lambda y)]=\\ \space\\ =\frac{\partial^2\textbf{}}{\partial x^2}e^{-\lambda x}\textbf{c}_1\text{sin}(\lambda x)+\frac{\partial^2\textbf{}}{\partial x^2}e^{-\lambda x}\textbf{c}_2 \text{cos}(\lambda y)+\\ \space\\ +\frac{\partial^2\textbf{}}{\partial y^2}e^{-\lambda x}\textbf{c}_1\text{sin}(\lambda x)+\frac{\partial^2\textbf{}}{\partial y^2}e^{-\lambda x}\textbf{c}_2 \text{cos}(\lambda y)=\\ \space\\ =-2\textbf{c}_1\lambda^2e^{-\lambda x}\text{cos}(\lambda x)+\textbf{c}_2\lambda^2e^{-\lambda x}\text{cos}(\lambda y)+\\ \space\\ +0-\textbf{c}_2\lambda^2e^{-\lambda x}\text{cos}(\lambda y)=\\ \space\\ =-2\textbf{c}_1\lambda^2e^{-\lambda x}\text{cos}(\lambda x).

We can't show what we were asked to show if we wrote the correct condition :(


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS