"T = 0.200 s; H = 0.544 m; \\\\\nv_0 = ?; V = ?; h_{max} = ? \\\\\n\nh = v_0t - \\frac{1}{2}gt^2; \\\\\nv_0 = \\frac{2H + gT^2}{2T} = \\frac{2\\cdot0.544m + 9.81\\frac{m}{s^2}(0.200s)^2}{2\\cdot0.200s} \n= 3.701 \\frac{m}{s}; \\\\\nv = v_0 - gt ; \\\\\nV = v_0 - gT = \\frac{2H - gT^2}{2T} = \\frac{2\\cdot0.544m - 9.81\\frac{m}{s^2}(0.200s)^2}{2\\cdot0.200s} \n= 1.739 \\frac{m}{s}; \\\\\nh_{max} = \\frac{v_0^2}{2g} = \\frac{(3.701 \\frac{m}{s})^2}{2*9.81\\frac{m}{s^2}} \\approx 0.698 m."
Answers:
(a) 3.701 m/s
(b) 1.739 m/s
(c) approx 0.698 m (i.e. from the ground).
Comments
Leave a comment