2019-04-26T04:02:31-04:00
The force of resistance on an object moving through a fluid is proportional to the square of its velocity. The initial velocity of an object of mass 1 kg moving through the fluid is 40 ms^−1. After 5 s the velocity reduces to 20 ms^−1. Calculate its velocity after
10 s.
1
2019-04-30T09:45:25-0400
m a = − k v 2 ma=-kv^2 ma = − k v 2
m d v d t = − k v 2 m\frac{dv}{dt}=-kv^2 m d t d v = − k v 2
d v v 2 = − k m d t \frac{dv}{v^2}=-\frac{k}{m} dt v 2 d v = − m k d t
∫ d v v 2 = − k m ∫ d t \intop\frac{dv}{v^2}=-\frac{k}{m} \intop dt ∫ v 2 d v = − m k ∫ d t
− 1 v 0 = − k m t + C -\frac{1}{v_0}=-\frac{k}{m} t +C − v 0 1 = − m k t + C The initial condition:
− 1 40 = C ⟹ C = − 0.025 -\frac{1}{40}=C\implies C=- 0.025 − 40 1 = C ⟹ C = − 0.025 We have:
− 1 v = − k m t − 0.025 ⟹ 1 v = k m t + 0.025 -\frac{1}{v}=-\frac{k}{m} t -0.025\implies \frac{1}{v}=\frac{k}{m} t+0.025 − v 1 = − m k t − 0.025 ⟹ v 1 = m k t + 0.025 After 5 s:
1 20 = k 1 5 + 0.025 ⟹ k = 0.005 \frac{1}{20}=\frac{k}{1} 5+0.025\implies k=0.005 20 1 = 1 k 5 + 0.025 ⟹ k = 0.005
After 10 s:
1 v = 0.005 1 10 + 0.025 \frac{1}{v}=\frac{0.005}{1} 10+0.025 v 1 = 1 0.005 10 + 0.025
v = 13.3 m s v=13.3\frac{m}{s} v = 13.3 s m
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments