The Kepler's third law states
"T^2=\\frac{4\\pi^2 a^3}{GM}"So, the radius of satellite orbit
"a=\\sqrt[3]{\\frac{GMT^2}{4\\pi^2}}""=\\sqrt[3]{\\frac{6.67\\times 10^{-11}\\times 5.97\\times 10^{24}\\times(2.5\\times 3600)^2}{4\\pi^2}}"
"=9.352\\times 10^6\\:\\rm{m}"
The height of satellite above the earth surface
"H=a-R""=9.352\\times 10^6-6.370\\times 10^6=2.982\\times 10^6\\:\\rm{m}"
"=2982\\:\\rm{km}"
Comments
Leave a comment