A 2.00-kg block is given an initial speed of 2.50 m/s up a plane inclined 15.0° with the horizontal.
The coefficient of kinetic friction between block and plane is 0.250. What speed does it have just as
it returns to its initial position?
mv22=mgh+Ffrl,\frac {mv^2}2=mgh+F_{fr}l,2mv2=mgh+Ffrl,
v22=gh+μghtanα,\frac{v^2}2=gh+\frac{\mu gh}{\tan\alpha},2v2=gh+tanαμgh,
h=v2tanα2g(tanα+μ);h=\frac{v^2\tan\alpha}{2g(\tan\alpha+\mu)};h=2g(tanα+μ)v2tanα;
mgh=mv122+Fl,mgh=\frac{mv_1^2}2+Fl,mgh=2mv12+Fl,
gh=v122+μghtanα,gh=\frac{v_1^2}2+\frac{\mu gh}{\tan\alpha},gh=2v12+tanαμgh,
v1=vtanα−μtanα+μ=0.47 ms.v_1=v\sqrt{\frac{\tan\alpha-\mu}{\tan\alpha+\mu}}=0.47~\frac ms.v1=vtanα+μtanα−μ=0.47 sm.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment