You can determine the index of
refraction of a substance by
determining its critical angle. (a) What
is the index of refraction of a
substance that has a critical angle of
68.4º when submerged in water?
What is the substance, based on Table
25.1? (b) What would the critical
angle be for this substance in air?
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small n_s.\\sin C&=\\small n_w.\\sin 90\\\\\n\\small \\frac{n_s}{n_w}&=\\small \\frac{1}{\\sin C}\\\\\n&=\\small \\frac{1}{\\sin 68.4}=1.076\\cdots(\\text{w.r.t water})\\\\\n\\\\\n\\small \\frac{n_s}{a_{air}}\\times\\frac{n_{air}}{n_w}&=\\small 1.076\\\\\n\\small \\frac{n_s}{n_{air}}=n_{substance}&=\\small 1.076\\times\\frac{n_w}{n_{air}}\\\\\n&=\\small 1.076\\times1.33\\\\\n&=\\small 1.43\\cdots{\\text{w.r.t air}}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small n_s.\\sin C&=\\small n_{air}.\\sin90\\\\\n\\small \\sin C&=\\small \\frac{n_{air}.1}{n_s}\\\\\n&=\\small \\frac{1}{1.43}\\\\\n\\small C&=\\small \\sin^{-1}(1\/1.43)\\\\\n&=\\small 44.4^0\n\\end{aligned}"
Comments
Leave a comment