Question #287705

2. An object of mass 10 kg is whirled round a horizontal circle of radius 4 m by a revolving string inclined to the vertical. If the uniform speed of the object is 5 m/s, calculate:



(i) the tension in the string



(ii) the angle of inclination of the string to the vertical.

1
Expert's answer
2022-01-17T16:20:29-0500

forces acting on an object:\text{forces acting on an object:} \text {}

FggravityF_g-\text{gravity}

Fg=mg=9.8×10=98NF_g=mg=9.8×10=98N

Fcforce centripetal accelerationF_c-\text{force centripetal acceleration}

Fc=ma;a=v2R=254=6.25m/s2F_c=ma;a=\frac{v^2}{R}=\frac{25}{4}=6.25m/s^2

Fc=10×6.25=62.5NF_c=10×6.25=62.5N

Tstring tensionT-\text{string tension}

X-axis projection\text{X-axis projection}

Tx+Fg=0T_x+F_g=0

Tx=Fg=98N|Tx|=F_g=98N

Y-axis projection\text{Y-axis projection}

Ty=FcT_y= F_c

Ty=62.5NT_y=62.5N

T=Tx2+Ty2=62.52+982116.23NT=\sqrt{T^2_x+T^2_y}=\sqrt{62.5^2+98^2}\approx116.23N

T=Tx2+Ty2=62.52+982116.23NT=\sqrt{T^2_x+T^2_y}=\sqrt{62.5^2+98^2}\approx116.23NT=Tx2+Ty2=62.52+982116.23NT=\sqrt{T^2_x+T^2_y}=\sqrt{62.5^2+98^2}\approx116.23N

αangle of inclination of the string to the vertical\alpha-\text{angle of inclination of the string to the vertical}

tanα=FcTx=62.5980.64\tan{\alpha}=\frac{F_c}{T_x}=\frac{62.5}{98}\approx0.64

α=32.6°\alpha=32.6\degree

Answer:T=116.23N;α=32.6°T=116.23N;\alpha=32.6\degree





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS