forces acting on an object: \text{forces acting on an object:} forces acting on an object: \text {} 
F g − gravity F_g-\text{gravity} F g  − gravity 
F g = m g = 9.8 × 10 = 98 N F_g=mg=9.8×10=98N F g  = m g = 9.8 × 10 = 98 N 
F c − force centripetal acceleration F_c-\text{force centripetal acceleration} F c  − force centripetal acceleration 
F c = m a ; a = v 2 R = 25 4 = 6.25 m / s 2 F_c=ma;a=\frac{v^2}{R}=\frac{25}{4}=6.25m/s^2 F c  = ma ; a = R v 2  = 4 25  = 6.25 m / s 2 
F c = 10 × 6.25 = 62.5 N F_c=10×6.25=62.5N F c  = 10 × 6.25 = 62.5 N 
T − string tension T-\text{string tension} T − string tension 
X-axis projection \text{X-axis projection} X-axis projection 
T x + F g = 0 T_x+F_g=0 T x  + F g  = 0 
∣ T x ∣ = F g = 98 N |Tx|=F_g=98N ∣ T x ∣ = F g  = 98 N 
Y-axis projection \text{Y-axis projection} Y-axis projection 
T y = F c T_y= F_c T y  = F c  
T y = 62.5 N T_y=62.5N T y  = 62.5 N 
T = T x 2 + T y 2 = 62. 5 2 + 9 8 2 ≈ 116.23 N T=\sqrt{T^2_x+T^2_y}=\sqrt{62.5^2+98^2}\approx116.23N T = T x 2  + T y 2   = 62. 5 2 + 9 8 2  ≈ 116.23 N 
T = T x 2 + T y 2 = 62. 5 2 + 9 8 2 ≈ 116.23 N T=\sqrt{T^2_x+T^2_y}=\sqrt{62.5^2+98^2}\approx116.23N T = T x 2  + T y 2   = 62. 5 2 + 9 8 2  ≈ 116.23 N T = T x 2 + T y 2 = 62. 5 2 + 9 8 2 ≈ 116.23 N T=\sqrt{T^2_x+T^2_y}=\sqrt{62.5^2+98^2}\approx116.23N T = T x 2  + T y 2   = 62. 5 2 + 9 8 2  ≈ 116.23 N 
α − angle of inclination of the string to the vertical \alpha-\text{angle of inclination of the string to the vertical} α − angle of inclination of the string to the vertical 
tan  α = F c T x = 62.5 98 ≈ 0.64 \tan{\alpha}=\frac{F_c}{T_x}=\frac{62.5}{98}\approx0.64 tan α = T x  F c   = 98 62.5  ≈ 0.64 
α = 32.6 ° \alpha=32.6\degree α = 32.6° 
Answer: T = 116.23 N ; α = 32.6 ° T=116.23N;\alpha=32.6\degree T = 116.23 N ; α = 32.6° 
  
Comments