2. An object of mass 10 kg is whirled round a horizontal circle of radius 4 m by a revolving string inclined to the vertical. If the uniform speed of the object is 5 m/s, calculate:
(i) the tension in the string
(ii) the angle of inclination of the string to the vertical.
"\\text{forces acting on an object:}" "\\text {}"
"F_g-\\text{gravity}"
"F_g=mg=9.8\u00d710=98N"
"F_c-\\text{force centripetal acceleration}"
"F_c=ma;a=\\frac{v^2}{R}=\\frac{25}{4}=6.25m\/s^2"
"F_c=10\u00d76.25=62.5N"
"T-\\text{string tension}"
"\\text{X-axis projection}"
"T_x+F_g=0"
"|Tx|=F_g=98N"
"\\text{Y-axis projection}"
"T_y= F_c"
"T_y=62.5N"
"T=\\sqrt{T^2_x+T^2_y}=\\sqrt{62.5^2+98^2}\\approx116.23N"
"T=\\sqrt{T^2_x+T^2_y}=\\sqrt{62.5^2+98^2}\\approx116.23N""T=\\sqrt{T^2_x+T^2_y}=\\sqrt{62.5^2+98^2}\\approx116.23N"
"\\alpha-\\text{angle of inclination of the string to the vertical}"
"\\tan{\\alpha}=\\frac{F_c}{T_x}=\\frac{62.5}{98}\\approx0.64"
"\\alpha=32.6\\degree"
Answer:"T=116.23N;\\alpha=32.6\\degree"
Comments
Leave a comment