In a shipping company distribution center, an open cart of mass 50.0 kg is rolling to the left at a speed of 5.00 m/s. You can ignore friction between the cart and the floor. A 15.0 kg package slides down a chute that is inclined at 37Β° from the horizontal and leaves the end of the chute with a speed of 3.00 m/s. The package lands in the cart and they roll off together. If the lower end of the chute is a vertical distance of 4.00 m above the bottom of the cart, what are the speed of the package just before it lands in the cart and what is the final speed of the cart?
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\leftarrow\\\\\n\\small m_1v_1+m_2v_2&=\\small (m_1+m_2)V\\\\\n\\small V&=\\small \\frac{50kg\\times5ms^{-1}+15kg\\times3ms^{-1}\\cos37}{(50+15)kg} \\\\\n&=\\small 4.4\\,ms^{-1}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small v^2&=\\small (3\\sin37)^2+2\\times9.8\\times4\\\\\n\\small v&=\\small 9.0ms^{-1}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small v_f&=\\small \\sqrt{9^2+(3\\cos37))^2}\\\\\n&=\\small 9.3ms^{-1}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\theta&=\\small \\tan^{-1}\\Big(\\frac{9}{3\\cos37}\\Big)\\\\\n&=\\small 75.1^0[South\\,of\\,West]\n\\end{aligned}"
Comments
Leave a comment