Explanations& Calculations
- Assuming the stone would remain in contact with the tyre without dislodging from it,
a)
- Apply "\\small \\omega_f = \\omega_i +\\alpha t" for the motion, you can compute the final angular velocity.
"\\qquad\\qquad\n\\begin{aligned}\n\\small\\omega_f&=\\small 0+100\\,rads^{-2}\\times3.0\\,s\\\\\n&=\\small \\bold{300\\,rads^{-1}}\n\\end{aligned}"
b)
- Apply "\\small \\theta= \\omega_it+\\frac{1}{2}\\alpha t^2" for the motion, you can compute the angular displacement of the stone.
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\theta&=\\small 0\\times3.0\\,s+0.5\\times(100\\,rads^{-2})\\times(3.0\\,s)^2\\\\\n&=\\small \\bold{450\\,rad}\n\\end{aligned}"
- This means the stone has completed a full rotation ("\\small 2\\pi \\,rad = 360^0" ) and another quarter ("\\small \\pi\/2\\,rad =90^0") during this 3 seconds.
Comments
Leave a comment