Solution.
F = k x ⟹ k = F x = 2 1 = 2 ; F=kx\implies k=\dfrac{F}{x}=\dfrac{2}{1}=2; F = k x ⟹ k = x F = 1 2 = 2 ;
W = m g ⟹ 3.2 = 32 m ⟹ m = 0.1 s l u g s . W=mg\implies 3.2=32m\implies m=0.1 slugs. W = m g ⟹ 3.2 = 32 m ⟹ m = 0.1 s l ug s .
β = 0.4 ; \beta=0.4; β = 0.4 ;
m x ′ ′ + β x ′ + k x = 0 ; mx^{''}+\beta x^{'}+kx=0; m x ′′ + β x ′ + k x = 0 ;
0.1 x ′ ′ + 0.4 x ′ + 2 x = 0 ; 0.1x^{''}+0.4x^{'}+2x=0; 0.1 x ′′ + 0.4 x ′ + 2 x = 0 ;
x ′ ′ + 4 x ′ + 20 x = 0 ; x^{''}+4x^{'}+20x=0; x ′′ + 4 x ′ + 20 x = 0 ;
2 λ = 4 ; λ = 2 , ω 2 = 20 2\lambda=4; \lambda=2, \omega^2=20 2 λ = 4 ; λ = 2 , ω 2 = 20
x ( t ) = e − λ t ( C 1 c o s ( ( ω 2 − λ 2 t ) + C 2 s i n ( ω 2 − λ 2 t ) ; x(t)=e^{-\lambda t}(C_1cos(\sqrt({\omega^2-\lambda^2}t)+C_2sin(\sqrt{\omega^2-\lambda^2}t); x ( t ) = e − λ t ( C 1 cos ( ( ω 2 − λ 2 t ) + C 2 s in ( ω 2 − λ 2 t ) ;
x ( t ) = e 2 t ( C 1 c o s ( 4 t ) + C 2 s i n ( 4 t ) ; x(t)=e^{2 t}(C_1cos(4t)+C_2sin(4t); x ( t ) = e 2 t ( C 1 cos ( 4 t ) + C 2 s in ( 4 t ) ;
x ′ ( 0 ) = 0 ; x ( 0 ) = − 1 ; C 1 = − 1 ; x^{'}(0)=0; x(0)=-1; C_1=-1; x ′ ( 0 ) = 0 ; x ( 0 ) = − 1 ; C 1 = − 1 ;
x ′ ( 0 ) = − 2 C 1 + 4 C 2 = 2 + 4 C 2 ⟹ C 2 = − 1 2 ; x^{'}(0)=-2C_1+4C_2=2+4C_2\implies C_2=-\dfrac{1}{2}; x ′ ( 0 ) = − 2 C 1 + 4 C 2 = 2 + 4 C 2 ⟹ C 2 = − 2 1 ;
x ( t ) = e − 2 t ( − c o s ( 4 t ) − 1 2 s i n ( 4 t ) ) ; x(t)=e^{-2t}(-cos(4t)-\dfrac{1}{2}sin(4t)); x ( t ) = e − 2 t ( − cos ( 4 t ) − 2 1 s in ( 4 t )) ;
x ( π 2 ) = e − π ( − c o s ( 2 π ) − 1 2 s i n ( 2 π ) ) = e − π . x(\dfrac{\pi}{2})=e^{-\pi}(-cos(2\pi)-\dfrac{1}{2}sin(2\pi))=e^{-\pi}. x ( 2 π ) = e − π ( − cos ( 2 π ) − 2 1 s in ( 2 π )) = e − π .
Answer: a ) x ( t ) = e − 2 t ( − c o s ( 4 t ) − 1 2 s i n ( 4 t ) ) ; a)x(t)=e^{-2t}(-cos(4t)-\dfrac{1}{2}sin(4t)); a ) x ( t ) = e − 2 t ( − cos ( 4 t ) − 2 1 s in ( 4 t )) ;
b ) e − π . b)e^{-\pi}. b ) e − π .
Comments