deternine the resultant of the following coplanar forces. 15N at 30 degress from the horizaontal, 55N at 80 degrees, 90N at 210 degrees, and 130N at 260 degrees
"\\vec F_1= 15N \\ \\angle(\\vec F_1) =30"
"\\vec F_2= 55N \\ \\angle(\\vec F_2) =80"
"\\vec F_3= 90N \\ \\angle(\\vec F_3) =210"
"\\vec F_4= 130N \\ \\angle(\\vec F_4) =260"
"\\vec F = \\vec F_1+\\vec F_2+\\vec F_3+\\vec F_4"
"\\vec{F_5}=\\vec{F_1}+\\vec{F_3}\\ \\angle{(\\vec{F_3},\\vec{F_1})}=210-30=180"
"\\vec F_5= 90-15 =75N;\\angle(\\vec F_5) =210"
"\\vec{F_6}=\\vec{F_2}+\\vec{F_4}\\ \\angle{(\\vec{F_3},\\vec{F_1})}=260-80=180"
"\\vec F_6= 130-55 =75N;\\angle(\\vec F_6) =260"
"\\vec F = \\vec F_5+\\vec F_6"
"|\\vec F_5|=|\\vec F_6|"
"\\angle (\\vec F_6,\\vec F_5)= 260-210 =50"
"\\angle(\\vec F) =\\angle(\\vec F_5)+\\frac{\\angle(\\vec F_6)-\\angle(\\vec F_5)}{2}=235"
"|\\vec F|^2= |\\vec F_5|^2+ |\\vec F_6|^2-2 |\\vec F_5| |\\vec F_6|\\cos\\angle (\\vec F_6,\\vec F_5)"
"|\\vec F|^2= 75^2+75^2-2*75^2*\\cos(50\\degree)=4018.64"
"|\\vec F|=\\sqrt{4018.64}=63.39"
"\\text{Answer: }\\vec F=63.39N;\\angle(\\vec F) =235\\degree"
Comments
Leave a comment