F ⃗ 1 = 15 N ∠ ( F ⃗ 1 ) = 30 \vec F_1= 15N \ \angle(\vec F_1) =30 F 1 = 15 N ∠ ( F 1 ) = 30
F ⃗ 2 = 55 N ∠ ( F ⃗ 2 ) = 80 \vec F_2= 55N \ \angle(\vec F_2) =80 F 2 = 55 N ∠ ( F 2 ) = 80
F ⃗ 3 = 90 N ∠ ( F ⃗ 3 ) = 210 \vec F_3= 90N \ \angle(\vec F_3) =210 F 3 = 90 N ∠ ( F 3 ) = 210
F ⃗ 4 = 130 N ∠ ( F ⃗ 4 ) = 260 \vec F_4= 130N \ \angle(\vec F_4) =260 F 4 = 130 N ∠ ( F 4 ) = 260
F ⃗ = F ⃗ 1 + F ⃗ 2 + F ⃗ 3 + F ⃗ 4 \vec F = \vec F_1+\vec F_2+\vec F_3+\vec F_4 F = F 1 + F 2 + F 3 + F 4
F 5 ⃗ = F 1 ⃗ + F 3 ⃗ ∠ ( F 3 ⃗ , F 1 ⃗ ) = 210 − 30 = 180 \vec{F_5}=\vec{F_1}+\vec{F_3}\ \angle{(\vec{F_3},\vec{F_1})}=210-30=180 F 5 = F 1 + F 3 ∠ ( F 3 , F 1 ) = 210 − 30 = 180
F ⃗ 5 = 90 − 15 = 75 N ; ∠ ( F ⃗ 5 ) = 210 \vec F_5= 90-15 =75N;\angle(\vec F_5) =210 F 5 = 90 − 15 = 75 N ; ∠ ( F 5 ) = 210
F 6 ⃗ = F 2 ⃗ + F 4 ⃗ ∠ ( F 3 ⃗ , F 1 ⃗ ) = 260 − 80 = 180 \vec{F_6}=\vec{F_2}+\vec{F_4}\ \angle{(\vec{F_3},\vec{F_1})}=260-80=180 F 6 = F 2 + F 4 ∠ ( F 3 , F 1 ) = 260 − 80 = 180
F ⃗ 6 = 130 − 55 = 75 N ; ∠ ( F ⃗ 6 ) = 260 \vec F_6= 130-55 =75N;\angle(\vec F_6) =260 F 6 = 130 − 55 = 75 N ; ∠ ( F 6 ) = 260
F ⃗ = F ⃗ 5 + F ⃗ 6 \vec F = \vec F_5+\vec F_6 F = F 5 + F 6
∣ F ⃗ 5 ∣ = ∣ F ⃗ 6 ∣ |\vec F_5|=|\vec F_6| ∣ F 5 ∣ = ∣ F 6 ∣
∠ ( F ⃗ 6 , F ⃗ 5 ) = 260 − 210 = 50 \angle (\vec F_6,\vec F_5)= 260-210 =50 ∠ ( F 6 , F 5 ) = 260 − 210 = 50
∠ ( F ⃗ ) = ∠ ( F ⃗ 5 ) + ∠ ( F ⃗ 6 ) − ∠ ( F ⃗ 5 ) 2 = 235 \angle(\vec F) =\angle(\vec F_5)+\frac{\angle(\vec F_6)-\angle(\vec F_5)}{2}=235 ∠ ( F ) = ∠ ( F 5 ) + 2 ∠ ( F 6 ) − ∠ ( F 5 ) = 235
∣ F ⃗ ∣ 2 = ∣ F ⃗ 5 ∣ 2 + ∣ F ⃗ 6 ∣ 2 − 2 ∣ F ⃗ 5 ∣ ∣ F ⃗ 6 ∣ cos ∠ ( F ⃗ 6 , F ⃗ 5 ) |\vec F|^2= |\vec F_5|^2+ |\vec F_6|^2-2 |\vec F_5| |\vec F_6|\cos\angle (\vec F_6,\vec F_5) ∣ F ∣ 2 = ∣ F 5 ∣ 2 + ∣ F 6 ∣ 2 − 2∣ F 5 ∣∣ F 6 ∣ cos ∠ ( F 6 , F 5 )
∣ F ⃗ ∣ 2 = 7 5 2 + 7 5 2 − 2 ∗ 7 5 2 ∗ cos ( 50 ° ) = 4018.64 |\vec F|^2= 75^2+75^2-2*75^2*\cos(50\degree)=4018.64 ∣ F ∣ 2 = 7 5 2 + 7 5 2 − 2 ∗ 7 5 2 ∗ cos ( 50° ) = 4018.64
∣ F ⃗ ∣ = 4018.64 = 63.39 |\vec F|=\sqrt{4018.64}=63.39 ∣ F ∣ = 4018.64 = 63.39
Answer: F ⃗ = 63.39 N ; ∠ ( F ⃗ ) = 235 ° \text{Answer: }\vec F=63.39N;\angle(\vec F) =235\degree Answer: F = 63.39 N ; ∠ ( F ) = 235°
Comments
Leave a comment