Answer to Question #244900 in Mechanics | Relativity for jaen

Question #244900

deternine the resultant of the following coplanar forces. 15N at 30 degress from the horizaontal, 55N at 80 degrees, 90N at 210 degrees, and 130N at 260 degrees


1
Expert's answer
2021-09-30T13:00:03-0400

F1=15N (F1)=30\vec F_1= 15N \ \angle(\vec F_1) =30

F2=55N (F2)=80\vec F_2= 55N \ \angle(\vec F_2) =80

F3=90N (F3)=210\vec F_3= 90N \ \angle(\vec F_3) =210

F4=130N (F4)=260\vec F_4= 130N \ \angle(\vec F_4) =260

F=F1+F2+F3+F4\vec F = \vec F_1+\vec F_2+\vec F_3+\vec F_4

F5=F1+F3 (F3,F1)=21030=180\vec{F_5}=\vec{F_1}+\vec{F_3}\ \angle{(\vec{F_3},\vec{F_1})}=210-30=180

F5=9015=75N;(F5)=210\vec F_5= 90-15 =75N;\angle(\vec F_5) =210

F6=F2+F4 (F3,F1)=26080=180\vec{F_6}=\vec{F_2}+\vec{F_4}\ \angle{(\vec{F_3},\vec{F_1})}=260-80=180

F6=13055=75N;(F6)=260\vec F_6= 130-55 =75N;\angle(\vec F_6) =260

F=F5+F6\vec F = \vec F_5+\vec F_6

F5=F6|\vec F_5|=|\vec F_6|

(F6,F5)=260210=50\angle (\vec F_6,\vec F_5)= 260-210 =50

(F)=(F5)+(F6)(F5)2=235\angle(\vec F) =\angle(\vec F_5)+\frac{\angle(\vec F_6)-\angle(\vec F_5)}{2}=235

F2=F52+F622F5F6cos(F6,F5)|\vec F|^2= |\vec F_5|^2+ |\vec F_6|^2-2 |\vec F_5| |\vec F_6|\cos\angle (\vec F_6,\vec F_5)

F2=752+7522752cos(50°)=4018.64|\vec F|^2= 75^2+75^2-2*75^2*\cos(50\degree)=4018.64

F=4018.64=63.39|\vec F|=\sqrt{4018.64}=63.39

Answer: F=63.39N;(F)=235°\text{Answer: }\vec F=63.39N;\angle(\vec F) =235\degree


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment