Question #244278

 A heartbroken fellow throws his engagement ring from the roof of a 20.0-m-tall building at an angle of  above the horizontal and with an initial speed of . Ignore air resistance and calculate:


a.     the maximum height above the roof of the building that the ring reaches;

b.    the speed of the ring before it reaches the ground;

c.     the horizontal range from the base of the building to the point where the ring strikes the ground.



1
Expert's answer
2021-09-29T14:08:03-0400

Let angle α=30°\alpha=30\degree , initial speed v0=30v_0=30 m/s


a.

ay=dvydt=ga_y=\frac{dv_y}{dt}=-g

vy=gt+v0sinαv_y=-gt+v_0sin\alpha

h=gt2/2+v0tsinαh=-gt^2/2+v_0tsin\alpha

h(t)=gt+v0sinα=0h'(t)=-gt+v_0sin\alpha=0

t=v0sinα/g=300.5/9.8=1.53t=v_0sin\alpha /g=30\cdot 0.5/9.8=1.53 s

hmax=301.530.59.81.532/2=11.5h_{max}=30\cdot 1.53 \cdot 0.5-9.8\cdot 1.53^2/2=11.5 m


b.

h=gt2/2+v0tsinα+h0=0h=-gt^2/2+v_0tsin\alpha+h_0=0

h0=20h_0=20 m

4.9t2+15t+20=0-4.9t^2+15t+20=0

t=15+225+804.99.8=4.07t=\frac{15+\sqrt{225+80\cdot 4.9}}{9.8}=4.07 s

vy=9.84.07+15=24.89v_y=-9.8\cdot 4.07+15=-24.89 m/s

vx=v0cosα=303/2=25.98v_x=v_0cos\alpha=30\sqrt{3}/2=25.98 m/s

v=vx2+vy2=24.892+25.982=35.98v=\sqrt{v_x^2+v_y^2}=\sqrt{24.89^2+25.98^2}=35.98 m/s


c.

s=vxt=v0tcosα=25.984.07=105.74s=v_xt=v_0tcos\alpha=25.98\cdot 4.07=105.74 m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS