A man start from a point A and walk a distance of 8.0 km due northeast to point B from B he then walks 4.0 km due South East to point x. Calculate the shortest distance between A and x.
"\\vec{AX}=\\vec{AB}+\\vec{BX}"
"\\angle(\\vec{AB},\\vec{BX})=\\angle(\\vec{NE},\\vec{SE})=\\frac{\\pi}{2}"
"\\vec{AX}^2=(\\vec{AB}+\\vec{BX})^2"
"\\vec{AX}^2=\\vec{AB}^2+\\vec{BX}^2+2\\vec{AB}*\\vec{BX}"
"2\\vec{AB}*\\vec{BX}=2* AB*BX*\\cos(\\angle(\\vec{AB},\\vec{BX}))=0"
"AX^2 =AB^2+BX^2"
"AX =\\sqrt{AB^2+BX^2}=\\sqrt{8^2+4^2}=8.94"
"\\text{Answer : }AX =8.94\\ km"
Comments
Leave a comment