A body of weight 50N is hauled along a tough horizontal plane by a pull of 18N acting at an angle of 14° with the horizontal. Find the coefficient of friction
"F_1= 18N"
"\\text{let }\\vec F \\text{ resultant force}"
"\\vec F= m \\vec a"
"\\vec a = 0 \\text{ since the body is hauled}"
"\\vec F=0"
"\\vec F = \\vec F_1+\\vec F_{fr}+\\vec N"
"\\text{for vertical axis Y:}"
"\\vec N-mg+\\vec F_1\\sin14\\degree= 0"
"\\vec N =mg - \\vec F_1\\sin14\\degree= 50-18*\\sin14\\degree=45.66"
"\\text{for horizontal axis X:}"
"\\vec F_1 \\cos14\\degree-F_{fr}=0"
"F_{fr}=\\vec F_1 \\cos14\\degree=18*\\cos14\\degree=17.47"
"\\mu= \\frac{F_{fr}}{N}=\\frac{17.47}{45.66}=0.383"
"\\text{Answer: } \\mu= 0.383"
Comments
Leave a comment