An aluminum tube is observed to be 60.4 cm long at 300 C. The tube is then set up in a linear expansion apparatus adjusted so that the initial gauge reading is zero. Steam at 1000 C is then allowed to enter the tube. After thermal equilibrium is attained at 100o C, it is observed that the change in pointer position of the apparatus is 100 divisions, where 1 pointer division change is equivalent to an expansion of 0.01mm. From this data, compute the coefficient of linear expansion of the rod and the percentage error. The accepted value of this coefficient for the rod is 2.4 x 10-5 / C0 . Express your answer to three significant figures.
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\Delta l&=\\small 0.01mm\\,\/div\\times100\\,div\\\\\n&=\\small 1\\,mm\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\Delta l&=\\small l_0.\\alpha.\\Delta\\theta\\\\\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\alpha &=\\small \\frac{\\Delta l}{l_0.\\Delta \\theta}=\\frac{1\\times 10^{-3}m}{0.604m\\times(100-30)\\,^0C}\\\\\n&=\\small \\bold{2.37\\times10^{-5}\\,\/^0C}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\%\\,E &=\\small |\\frac{\\alpha_{cal}-\\alpha_{acc}}{\\alpha_{acc}}|\\times100\\%\\\\\n&=\\small |\\frac{2.37\\times10^{-5}-2.4\\times10^{-5}}{2.4\\times10^{-5}}|\\times100\\%\\\\\n&=\\small \\bold{1.25\\%} \n\\end{aligned}"
Comments
Leave a comment