The Sun has a radius of 7:0 108 m, approximately, and a period of rotation
about its axis equal to 24.7 days. What is the Doppler shift of a spectral line with
laboratory wavelength 500 nm, in the light emitted (a) from the center of the Sun
and (b) from the edges of the Sun’s disk at its equator?
Ans.: (a) Dk ¼ 1:8 108 nm, (b) Dk ¼
0:00344 nm
"\\lambda= \\lambda_0 \\frac{1+ \\beta cos \\theta}{\\sqrt{1- \\beta^2}} \\approx \\lambda_0(1+ \\beta cos \\theta+ \\frac{1}2 \\beta^2)"
"\\nabla \\lambda=\\lambda- \\lambda _0 \\approx \\lambda_0 (\\frac{V}c) cos \\theta+ \\frac {\\lambda _0}2(\\frac{V}c)^2"
"\\nabla \\lambda \\approx \\frac{\\lambda_0}{2}(\\frac{V}c)^2"
"\\nabla \\lambda_0 \\approx \\lambda_0(\\frac{V}c)+ \\frac {\\lambda _0}2 (\\frac{V}{c})^2" and "\\nabla \\lambda_{180} \\approx-\\lambda_0(\\frac{V}c)+\\frac{\\lambda_0}2(\\frac{V}c)^2"
"\\nabla \\lambda=\\frac{\\nabla \\lambda_0+ \\nabla \\lambda{180}}{2} \\approx\\frac{\\lambda_0}2(\\frac{V}c)^2"
Comments
Leave a comment