λ = λ 0 1 + β c o s θ 1 − β 2 ≈ λ 0 ( 1 + β c o s θ + 1 2 β 2 ) \lambda= \lambda_0 \frac{1+ \beta cos \theta}{\sqrt{1- \beta^2}} \approx \lambda_0(1+ \beta cos \theta+ \frac{1}2 \beta^2) λ = λ 0 1 − β 2 1 + β cos θ ≈ λ 0 ( 1 + β cos θ + 2 1 β 2 )
∇ λ = λ − λ 0 ≈ λ 0 ( V c ) c o s θ + λ 0 2 ( V c ) 2 \nabla \lambda=\lambda- \lambda _0 \approx \lambda_0 (\frac{V}c) cos \theta+ \frac {\lambda _0}2(\frac{V}c)^2 ∇ λ = λ − λ 0 ≈ λ 0 ( c V ) cos θ + 2 λ 0 ( c V ) 2
∇ λ ≈ λ 0 2 ( V c ) 2 \nabla \lambda \approx \frac{\lambda_0}{2}(\frac{V}c)^2 ∇ λ ≈ 2 λ 0 ( c V ) 2
∇ λ 0 ≈ λ 0 ( V c ) + λ 0 2 ( V c ) 2 \nabla \lambda_0 \approx \lambda_0(\frac{V}c)+ \frac {\lambda _0}2 (\frac{V}{c})^2 ∇ λ 0 ≈ λ 0 ( c V ) + 2 λ 0 ( c V ) 2 and ∇ λ 180 ≈ − λ 0 ( V c ) + λ 0 2 ( V c ) 2 \nabla \lambda_{180} \approx-\lambda_0(\frac{V}c)+\frac{\lambda_0}2(\frac{V}c)^2 ∇ λ 180 ≈ − λ 0 ( c V ) + 2 λ 0 ( c V ) 2
∇ λ = ∇ λ 0 + ∇ λ 180 2 ≈ λ 0 2 ( V c ) 2 \nabla \lambda=\frac{\nabla \lambda_0+ \nabla \lambda{180}}{2} \approx\frac{\lambda_0}2(\frac{V}c)^2 ∇ λ = 2 ∇ λ 0 + ∇ λ 180 ≈ 2 λ 0 ( c V ) 2
Comments